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Lecture 6:
Dynamic optimization in continuous
time



Optimal control (ref: Acemoglu ch?)



The canonical continuous time problem

- can be written as

t

max W(x(t),y(t)) = [ f(t,x(t),y(t))dt (1)
x(6),y(t) 0

subject to
X(t) = G(t, x(t), y(1))
x(t) € X(t) € R®, y(t) € Y(t) € R Ky, K, € N

for all t and x(0) = xo, where f: R x R x R — R and
G: R x R x RY — RKx,



- Vector x denotes the state variables. The evolution of this
is governed by a system of difference equations, given the
vector of control variables y.

- The end of the planning horizon can be equal to infinity.

- W(x(t),y(t)) denotes the value of the objective function
when the controls are given by y and the resulting
behavior of state variables is summarized by x.

- Note that, now the maximization is with respect to an
infinite dimensional object, y : [to, t1] — R.



Variational arguments

- Consider a special case of (1), where t; is finite and where
both the state and the control variables are
one-dimensional

- We have

t
max Wx(t),y(t)) = [ fitx®.ye)dt @)
X(t)7y(t),X1 0
st
x(t) = g(t, x(t), y(t)) (3)

Xt)e X CRy(t)eYCR Wt x(0) =xo,x(t) = X1 (&)



- X and Y are assumed to be non-empty and convex.

- A pair of functions x(t) and y(t) that satisfies (3) and (4) is
referred as admissible.

- W(x(t),y(t)) < oo is assumed for all admissible pair

(x(t), ¥(1))-

- Moreover, it is assumed that fand g are continuously
differentiable functions of x,y and t.

- Challenges:

1. We are choosing a function y : [0,t;] — Y rather than a
vector or a finite-dimensional object.

2. Constraint takes the form of a differential equation rather
than that of a set of inequalities or equalities.



- Assume that there exists a continuous solution (function)

y
- that lies everywhere in the interior of the set Y
- with corresponding state variable, X, everywhere in the
interior of X.

- We have
W(X(t), §(t)) > W(x(t), (1)),
for any admissible pair (x(t), y(t))
- Variational argument: there shouldn’t be any small

changes in controls that increase the value of objective
function (analogy: FOCs in standard calculus).

- What is a small deviation here?



- Take an arbitrary fixed continuous function n(t)
- Lete € R be a real number
- Then a variation of the function J(t)

y(t, ) = Y(t) + en(),

given n(t), y(t, ) is obtained by varying e
- Some of these variations may be infeasible.

- However, since y(t) € int) and continuous function over a
compact set [0, t1] Is bounded, for any fixed n(-) we can
always find &, such that

y(t,e) = J(t) +en(t) € inty

forallt € [0,t4] and for all € € [~¢;, 7] so that y(t, ) is
feasible.



- The path of the state variable corresponding to the path
of the control variable can be defined by

x(t,e) = g(t, x(t, ), y(t, e)

forallt € [0, tq], with x(0,¢) = xo

- Since X(t) € int X, for all t, for sufficiently small ¢, i.e.
€ € [~ey,&y] C [~&3, 6] for some g, < g7, we have that
X(g,t) € intX for all t.

- Thus, when € € [—¢y, &y], (X(t,€),y(t,€)) is feasible.



« Define
W(e) = W(X(t, £), ¥(t,¢)) = 01f(t,(X(t,6)7y(t,s))dt (5)

- As §(t) is optimal and for € € [—&y, &), X(t,€) and y(t, e)
feasible, we have
W(e) < W(0) Ve € [—ep, &n)
- Next rewrite (3), as
g9(t,x(t,), y(t, €)) — X(t) = 0
for all t. Thus for any function A: [0: 1] = R

/O ’ AD)[g(t, x(t, €), y(t, €)) — x(t)]dt = 0. (6)

- Assume () is continuously differentiable. When chosen
suitable, this costate variable is analogous to the
Lagrange multiplier.
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- Adding (6) to (5) yields

ty
W(e) = i {f(t, (x(t,€), y(t, €))+A(O)[g(t x(t, €), ¥(t, €))—X(t, €)] }t
(7)

- To proceed, consider the integral fO“ A(t)x(t,e)dt. Integrate
this by parts

/ " MO )t = A(tX(Er, ) — A(O)Ko — / " MOt )t
0 0
- Plug this into (7)

ty
W(e) = ; [f(t, (x(t, ), y(t,€)) + A(t)g(t, x(t, €), ¥(t, €))

+ A(D)X(t, €)]dt — A(t1)x(tr, €) + A(0)xo

"



- Differentiate W(e) wrt e
We) = ; TAd) + M) + A (t, )t

&
S i [fy(-) + A(®)gy(-)In(t)dt
— A(tr)xe(ta, €),

where we have used the Leibniz Rule and the fact that
Ve(t,e) = n(t).
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- Evaluate the previous derivative at e = 0, the optimality
requires that W'(e) = 0 for all n(t).

- This is possible in general if all the terms are zero

A1) = =[f() + A()ax ()], (8)
fy(-) + A(t)gy() =0 (9)
Aty) =0 (10)

- The condition A\(t;) = 0 is similar to the one looked at we
in the finite discrete time problems.
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Necessary conditions

- Consider the problem of maximizing (2) subject to (3) and
(4), with f and g continuously differentiable. Suppose that
this problem has an interior continuous solution
y(t) € inty with a corresponding path of state variable
X € intX.

- Then there exists a continuously differentiable costate
function \(-) defined on t € [0,t;] such that (3), (8), (9) and
(10) hold.
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The Hamiltonian

- By analogy with the Lagrangian, there is a more
economical way of expressing the previous optimality
conditions.

- Let's construct the Hamiltonian:

H(t, x(t), ¥(1), A1) = At x(1), y(8)) + AMB)g (¢, x(t), ¥(1)). (1)

- The necessary conditions
Hy (t,X(t), §(t), A(t)) = 0 vt € [0, t4], (12)
A(t) = —Hy(t,%(0), 9(1), (1)) Vte[o,t]  (13)

and
X(t) = Ha(t (1), 9(1), A(t))  Vte[o,ti], (14)

with x(0) = xo and A(t;) = 0.
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- Notation: x means X.

- As with the discrete time optimization the solution is
characterized by a set of "multipliers”, \(t), and the
optimal path of state, X(t) and control variables, j(t).

- Moreover, as with the Lagrange multipliers, the costate
variable, A(t), is informative about the value of relaxing
the constraint.

- With this interpretation, it makes sense that A(t;) =0 is
part of the solution.



Sufficient conditions

- Necessary conditions are also sufficient when either
- Mangasarian'’s sufficiency conditions: H(t, x(t), y(t), A(t)) is

joint concave in (x,y) € X x Y (if f and g are concave we
are typically fine),

- Arrow’s sufficiency conditions: the maximized Hamiltonian,
maxyey H(t, x(t), y(t), A(t)) is concave in x.
hold.



Exponential discounting

- Typically in economics, the utility is discounted
exponentially.

t
Vixo) = max / e~ Pf(X(), y(t)dt  withp >0, (15)
X(t),y(t),)ﬁ 0

st
X(t) = g(x(1), ¥(1)) (16)
x()eX CRy(t) e YCR ¥Vt x(0) = xo,X(t1) = X3
(17)

- Note that, we also assumed autonomous differential
equation for g(-).
- We often also need a terminal value condition
im0 b(E)X() > xq for some x; € R, where
lim;_,00 b(t) < oo (think about the no Ponzi-game
condition). 18



- The Hamiltonian is

H(-) = e~Pf(x(2), y(£)) +A(0) g (x(1), ¥(1)) = e [f(-)+1(1)

/\Q

()]
18)

- Rather than working with the standard Hamiltonian,H(-),
we can work with the current-value Hamiltonian A.

H() = e PIfx(), y(1) + p(t)g(x(), ()] = e #A (19)

- Rewritten necessary conditions

Ay (x(1), y(1), (1)) = (20)
pu(t)—u() F(x(t), (1), (1)) (21)
X(t) = A (x(1), ¥(1), 1)) (22)

e Pliu(t)) =0 (23)

with x(0) given
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Discounted infinite-horizon problems

- In growth theory (and in Macro more generally ), the time
horizon is usually infinite.

- The previously stated optimality conditions (20)-(22) are
still valid for the infinite-horizon problem.

- Condition (23) is, however, replaced with a transversality
condition.

- Here we just state the problem typically encountered in
economics contexts and give the "cookbook” solution
method.

- Under certain relatively mild technical conditions (that
typically hold in the macro/growth context) it gives the
necessary conditions for (interior) optima (see theorem
713 in Acemoglu’s book for details).
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Infinite-horizon and the current value Hamiltonian

« The current value Hamiltonian is defined as before

AC(E), (1), (), = FOX(E), V(1) + u(t)a(x(1) v(1))  (24)

- The necessary conditions

Ay (x(t), ¥(t), u(t)) = 0 (25)
pu(t) — fa(t) = FA(x(t), ¥(t), (L)) (26)
X(t) = Au(x(6), ¥(t), (1)) (27)
forall t and
lim e=?Tu(T)x(T) = 0 (28)

with x(0) given.

- Sufficiency: for any feasible pair (x(t), y(t))
liMesoo[e™ P u(t)x(t)] > 0 and maxy ey Ax(0), (1), p(t)) is
concave in x(t) € X for all t (see theorem 714 for technical
details).
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The Hamilton-Jacobi-Bellman equation

- Suppose that (X(t), #(t)) is a solution to

WO = e /ooo e x(),W(t)dt  (29)

subject to (16) and (17).
- Then,

ty
Vix(O) = [ e R, IO)dt+ e V) (0)
0
- Hamilton-Jacobi-Bellman equation

PV((0)) = f(x(D), 9(0)) + V(R(0)) (31)

- Interpretation: no arbitrage asset value equation.
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Heuristic derivation

+ Start with the value function

o) = [ e, 90Nt + ee [ eA-20fG3(), go)e

At
= f(%(0), 9(0)) At + o(At) + e PALY(R(AL))

where we have used eq (30) and o(At) is the residual
from approximation fOAt e~PH(%, ) ~ f(X(0), §(0))At

- The o(At) term is second order in the sense that
limm_,o O(At)/At =0.
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- Subtracting V(At) from both sides and dividing both sides
by At yields

V(x(0)) — V(X(AD))
At

= f(3(0).9(0))+ 229 € Ty g(an)

- Taking limits as At — 0,

—V(%(0)) = f(X(0),$(0)) — pV(X(0))

or

2%
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