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Lecture 6:
Dynamic optimization in continuous
time
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Optimal control (ref: Acemoglu ch7)



The canonical continuous time problem

• can be written as

max
x(t),y(t)

W(x(t), y(t)) ≡
∫ t1

0
f(t, x(t), y(t))dt (1)

subject to
ẋ(t) = G(t, x(t), y(t))

x(t) ∈ X (t) ∈ RKx,, y(t) ∈ Y(t) ∈ RKy,, Kx, Ky ∈ N

for all t and x(0) = x0, where f : R× RKx × RKy → R and
G : R× RKx × RKy → RKx .
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• Vector x denotes the state variables. The evolution of this
is governed by a system of difference equations, given the
vector of control variables y.

• The end of the planning horizon can be equal to infinity.
• W(x(t), y(t)) denotes the value of the objective function
when the controls are given by y and the resulting
behavior of state variables is summarized by x.

• Note that, now the maximization is with respect to an
infinite dimensional object, y : [t0, t1] → R.
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Variational arguments

• Consider a special case of (1), where t1 is finite and where
both the state and the control variables are
one-dimensional

• We have

max
x(t),y(t),x1

W(x(t), y(t)) ≡
∫ t1

0
f(t, x(t), y(t))dt (2)

st
ẋ(t) = g(t, x(t), y(t)) (3)

x(t) ∈ X ⊂ R, y(t) ∈ Y ⊂ R ∀t, x(0) = x0, x(t1) = x1 (4)
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• X and Y are assumed to be non-empty and convex.
• A pair of functions x(t) and y(t) that satisfies (3) and (4) is
referred as admissible.

• W(x(t), y(t)) < ∞ is assumed for all admissible pair
(x(t), y(t)).

• Moreover, it is assumed that f and g are continuously
differentiable functions of x, y and t.

• Challenges:
1. We are choosing a function y : [0, t1] → Y rather than a
vector or a finite-dimensional object.

2. Constraint takes the form of a differential equation rather
than that of a set of inequalities or equalities.
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• Assume that there exists a continuous solution (function)
ŷ

• that lies everywhere in the interior of the set Y
• with corresponding state variable, x̂, everywhere in the
interior of X .

• We have
W(x̂(t), ŷ(t)) ≥ W(x(t), y(t)),

for any admissible pair (x(t), y(t))
• Variational argument: there shouldn’t be any small
changes in controls that increase the value of objective
function (analogy: FOCs in standard calculus).

• What is a small deviation here?
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• Take an arbitrary fixed continuous function η(t)
• Let ε ∈ R be a real number
• Then a variation of the function ŷ(t)

y(t, ε) ≡ ŷ(t) + εη(t),

given η(t), y(t, ε) is obtained by varying ϵ
• Some of these variations may be infeasible.
• However, since ŷ(t) ∈ intY and continuous function over a
compact set [0, t1] is bounded, for any fixed η(·) we can
always find ε′η such that

y(t, ε) = ŷ(t) + εη(t) ∈ intY

for all t ∈ [0, t1] and for all ε ∈ [−ε′η, ε
′
η] so that y(t, ε) is

feasible.
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• The path of the state variable corresponding to the path
of the control variable can be defined by

ẋ(t, ε) = g(t, x(t, ε), y(t, ε)

for all t ∈ [0, t1], with x(0, ε) = x0
• Since x̂(t) ∈ intX , for all t, for sufficiently small ε, i.e.
ε ∈ [−εη, εη] ⊂ [−ε′η, ε

′
η] for some εη < ε′η , we have that

x(ε, t) ∈ intX for all t.
• Thus, when ε ∈ [−εη, εη], (x(t, ε), y(t, ε)) is feasible.

9



• Define

W(ε) ≡ W(x(t, ε), y(t, ε)) =
∫ t1

0
f(t, (x(t, ε), y(t, ε))dt (5)

• As ŷ(t) is optimal and for ε ∈ [−εη, εη], x(t, ε) and y(t, ε)
feasible, we have

W(ε) ≤ W(0) ∀ε ∈ [−εη, εη]

• Next rewrite (3), as

g(t, x(t, ε), y(t, ε))− ẋ(t) = 0

for all t. Thus for any function λ : [0 : t1] → R∫ t1

0
λ(t)[g(t, x(t, ε), y(t, ε))− ẋ(t)]dt = 0. (6)

• Assume λ(·) is continuously differentiable. When chosen
suitable, this costate variable is analogous to the
Lagrange multiplier.
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• Adding (6) to (5) yields

W(ε) =

∫ t1

0
{f(t, (x(t, ε), y(t, ε))+λ(t)[g(t, x(t, ε), y(t, ε))−ẋ(t, ε)]}dt

(7)
• To proceed, consider the integral

∫ t1
0 λ(t)ẋ(t, ε)dt. Integrate

this by parts∫ t1

0
λ(t)ẋ(t, ε)dt = λ(t1)x(t1, ε)− λ(0)x0 −

∫ t1

0
λ̇(t)x(t, ε)dt

• Plug this into (7)

W(ε) =

∫ t1

0
[f(t, (x(t, ε), y(t, ε)) + λ(t)g(t, x(t, ε), y(t, ε))

+ λ̇(t)x(t, ε)]dt− λ(t1)x(t1, ε) + λ(0)x0
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• Differentiate W(ε) wrt ε

W′(ε) ≡
∫ t1

0
[fx(·) + λ(t)gx(·) + λ̇(t)]xε(t, ε)dt

+

∫ t1

0
[fy(·) + λ(t)gy(·)]η(t)dt

− λ(t1)xε(t1, ε),

where we have used the Leibniz Rule and the fact that
yε(t, ε) = η(t).

12



• Evaluate the previous derivative at ε = 0, the optimality
requires that W′(ε) = 0 for all η(t).

• This is possible in general if all the terms are zero

λ̇(t) = −[fx(·) + λ(t)gx(·)], (8)

fy(·) + λ(t)gy(·) = 0 (9)

λ(t1) = 0 (10)

• The condition λ(t1) = 0 is similar to the one looked at we
in the finite discrete time problems.
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Necessary conditions

• Consider the problem of maximizing (2) subject to (3) and
(4), with f and g continuously differentiable. Suppose that
this problem has an interior continuous solution
ŷ(t) ∈ intY with a corresponding path of state variable
x̂ ∈ intX .

• Then there exists a continuously differentiable costate
function λ(·) defined on t ∈ [0, t1] such that (3), (8), (9) and
(10) hold.
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The Hamiltonian

• By analogy with the Lagrangian, there is a more
economical way of expressing the previous optimality
conditions.

• Let’s construct the Hamiltonian:

H(t, x(t), y(t), λ(t)) ≡ f(t, x(t), y(t))+λ(t)g(t, x(t), y(t)). (11)

• The necessary conditions

Hy(t, x̂(t), ŷ(t), λ(t)) = 0 ∀t ∈ [0, t1], (12)

λ̇(t) = −Hx(t, x̂(t), ŷ(t), λ(t)) ∀t ∈ [0, t1] (13)

and
ẋ(t) = Hλ(t, x̂(t), ŷ(t), λ(t)) ∀t ∈ [0, t1], (14)

with x(0) = x0 and λ(t1) = 0.
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• Notation: ẋ means ˙̂x.
• As with the discrete time optimization the solution is
characterized by a set of ”multipliers”, λ(t), and the
optimal path of state, x̂(t) and control variables, ŷ(t).

• Moreover, as with the Lagrange multipliers, the costate
variable, λ(t), is informative about the value of relaxing
the constraint.

• With this interpretation, it makes sense that λ(t1) = 0 is
part of the solution.
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Sufficient conditions

• Necessary conditions are also sufficient when either
• Mangasarian’s sufficiency conditions: H(t, x(t), y(t), λ(t)) is
joint concave in (x, y) ∈ X × Y (if f and g are concave we
are typically fine),

• Arrow’s sufficiency conditions: the maximized Hamiltonian,
maxy∈Y H(t, x(t), y(t), λ(t)) is concave in x.

hold.
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Exponential discounting

• Typically in economics, the utility is discounted
exponentially.

V(x0) = max
x(t),y(t),x1

∫ t1

0
e−ρtf(x(t), y(t))dt with ρ > 0, (15)

st
ẋ(t) = g(x(t), y(t)) (16)

x(t) ∈ X ⊂ R, y(t) ∈ Y ⊂ R ∀t, x(0) = x0, x(t1) = x1
(17)

• Note that, we also assumed autonomous differential
equation for g(·).

• We often also need a terminal value condition
limt→∞ b(t)x(t) ≥ x1 for some x1 ∈ R, where
limt→∞ b(t) < ∞ (think about the no Ponzi-game
condition). 18



• The Hamiltonian is

H(·) = e−ρtf(x(t), y(t))+λ(t)g(x(t), y(t)) = e−ρt[f(·)+µ(t)g(·)]
(18)

• Rather than working with the standard Hamiltonian,H(·),
we can work with the current-value Hamiltonian Ĥ.

H(·) = e−ρt[f(x(t), y(t)) + µ(t)g(x(t), y(t))] = e−ρtĤ (19)

• Rewritten necessary conditions

Ĥy(x(t), y(t), µ(t)) = 0 (20)

ρµ(t)− µ̇(t) = Ĥx(x(t), y(t), µ(t)) (21)

ẋ(t) = Ĥµ(x(t), y(t), µ(t)) (22)

e−ρt1µ(t1) = 0 (23)

with x(0) given
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Discounted infinite-horizon problems

• In growth theory (and in Macro more generally ), the time
horizon is usually infinite.

• The previously stated optimality conditions (20)-(22) are
still valid for the infinite-horizon problem.

• Condition (23) is, however, replaced with a transversality
condition.

• Here we just state the problem typically encountered in
economics contexts and give the ”cookbook” solution
method.

• Under certain relatively mild technical conditions (that
typically hold in the macro/growth context) it gives the
necessary conditions for (interior) optima (see theorem
7.13 in Acemoglu’s book for details).
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Infinite-horizon and the current value Hamiltonian

• The current value Hamiltonian is defined as before

Ĥ(x(t), y(t), µ(t)),= f(x(t), y(t)) + µ(t)g(x(t), y(t)) (24)

• The necessary conditions

Ĥy(x(t), y(t), µ(t)) = 0 (25)

ρµ(t)− µ̇(t) = Ĥx(x(t), y(t), µ(t)) (26)
ẋ(t) = Ĥµ(x(t), y(t), µ(t)) (27)

for all t and
lim
T→∞

e−ρTµ(T)x(T) = 0 (28)

with x(0) given.
• Sufficiency: for any feasible pair (x(t), y(t))
limt→∞[e−ρtµ(t)x(t)] ≥ 0 and maxy(t)∈Y Ĥ(x(t), y(t), µ(t)) is
concave in x(t) ∈ X for all t (see theorem 7.14 for technical
details).
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The Hamilton-Jacobi-Bellman equation

• Suppose that (x̂(t), ŷ(t)) is a solution to

V(x(0)) = max
x(t),y(t)

∫ ∞

0
e−ρtf(x(t), y(t))dt (29)

subject to (16) and (17).
• Then,

V(x(0)) =
∫ t1

0
e−ρtf(x̂(t), ŷ(t))dt+ e−ρt1V(x̂(t1)) (30)

• Hamilton-Jacobi-Bellman equation

ρV(x̂(0)) = f( ˆx(0), ŷ(0)) + V̇(x̂(0)) (31)

• Interpretation: no arbitrage asset value equation.
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Heuristic derivation

• Start with the value function

V(x0) =
∫ ∆t

0
e−ρtf(x̂(t), ŷ(t))dt+ e−ρ∆t

∫ ∞

∆t
e−ρ(t−∆t)f(x̂(t), ŷ(t))dt

= f(x̂(0), ŷ(0))∆t+ o(∆t) + e−ρ∆tV(x̂(∆t))

where we have used eq (30) and o(∆t) is the residual
from approximation

∫ ∆t
0 e−ρtf(x̂, ŷ) ≈ f(x̂(0), ŷ(0))∆t

• The o(∆t) term is second order in the sense that
lim∆t→0 o(∆t)/∆t = 0.
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• Subtracting V(∆t) from both sides and dividing both sides
by ∆t yields

V(x̂(0))− V(x̂(∆t))
∆t = f(x̂(0), ŷ(0))+o(∆t)

∆t +
e−ρt1 − 1

∆t V(x̂(∆t))
(32)

• Taking limits as ∆t→ 0,

−V̇(x̂(0)) = f(x̂(0), ŷ(0))− ρV(x̂(0))

or
ρV(x̂(0)) = f(x̂(0), ŷ(0)) + V̇(x̂(0)) (33)
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