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Foundations of Neoclassical Growth
(ref: Acemoglu, ch 5)



• In the previous lecture, we assumed a constant saving rate
• In order to understand how different factors affect
savings, we need to specify the preference ordering of
households and derive saving decisions from these
preferences.

• With well specified preferences we can also think about
the desirability of different allocations.
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Preliminaries

• A unit measure of infinitely-lived households (averages
equal to aggregates)

• Households have well-defined preference orderings which
can be represented by utility functions

• Household h has an instantaneous utility function (felicity
function) given by

uh(ch(t)),

where ch is the household’s consumption at t, and
uh : R+ → R

• Assumptions:
1. No utility from consumption of other households
2. time-separable and stationary preferences
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• Households are assumed to discount the future
exponentially

• In discrete time this implies that a household’s utility can
be represented as

Uh(ch(0), ch(1), ch(2), ..., ch(T)) =
T∑
t=0

(βh)tu(ch(t)), (1)

where 0 < β < 1 and T could be infinite.
• This specification ensures time-consistent behaviour.
• A solution, {xt}Tt=0, to a dynamic problem is
time-consistent if the following is true, when {xt}Tt=0 is a
solution starting at t=0, {xt}Tt=t′ is a solution starting from
from t’.
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The representative household

• An economy admits a representative household when the
demand side of the economy can be represented as if
there was a single household making the consumption
and saving decisions.

• A stronger notion, a normative representative household
allows one also to do welfare analysis based on the
preferences of the representative household.

• If all agents are identical, there naturally exists a
normative representative household.

• When agents are heterogeneous, it depends on
preferences whether a representative household exists.
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The representative household: Gorman’s aggregation theorem

• Consider an economy with N < ∞ commodities and a set
H of households

• When preferences of each household h ∈ H take the form

vh(p,w) = ah(p) + b(p)wh, (2)

where p is a price vector and wh is the HH’s wealth,
• and each household has positive demand for each
commodity

• then the preferences can be aggregated and represented
by those of a representative household

v(p,w) = a(p) + b(p)w,

where a(p) ≡
∫
h∈H a

h(p)dh and w ≡
∫
h∈H w

hdh
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• With ”Gorman preferences”, there is a linear relationship
between income and consumption (for a given price)

• This condition has to hold if we wish to have a
representative household (without imposing restrictions
on the distribution of income)

• An economy admits a strong representative household if
the redistribution of income (or endowments) does not
affect the demand.

• The Gorman preferences also generally imply the
existence of a normative representative household (see
theorem 5.3 in Acemoglu’s book)
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An example: CES preferences

• Each HH h
• has preferences

Uh(xh1 , ..., xhN) = [
N∑
j=1

(xhj − ξhj )
σ−1
σ ]

σ
σ−1 ,

where 0 < σ < ∞ and ξhj ∈ [−ξ̄, ξ̄]

• faces prices p = {p1, ...,pN}
•
∑N

j=1 pjξ̄ < wh
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• The household’s problem

max
{xj}

Uh(x1, ..., xN)− λ(wh −
N∑
j=1

pjxj)

• Combining two FOCs for good i and j

xj − ξhj

xi − ξhi
=

(
pi
pj

)σ

• Multiply by pj and sum over js

wh −
∑N

j=1 pjξhj
xi − ξhi

= pσi
N∑
j=1

p1−σ
j
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• Thus

xi − ξhi =
wh −

∑N
j=1 pjξhj

pσi
∑N

j=1 p
1−σ
j

• Plug this into U(xh1 , ..., xN) to get

vh(p,wh) =
wh −

∑N
j=1 pjξhj

(
∑N

j=1 p
1−σ
j )(

∑N
i=1 p

1−σ
i )

σ
σ−1

=
wh −

∑N
j=1 pjξhj(∑N

j=1 p
1−σ
j

) 1
1−σ

which satisfies the Gorman form.
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Infinite planning horizon

• Most growth (and macro) models assume an infinite
planning horizon

• Rationalizations:
• perpetual youth model
• intergenerational altruism

• The simplest form of the perpetual youth model:
• individuals’ utility follows the form stated in eq(1) with
discount factor β̂

• in each period, there is a constant probability of death ν

• Combining:

U(c(0), c(1), ...) = u(c(0)) + β̂(1− ν)u(c(1))
+β̂2(1− ν)2u(c(2)) + ...

=
∞∑
t=0

βtu(c(t))
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Intergenerational altruism (the bequest motive)

• An individual
• lives only for one period and has a single offspring (who
also lives for one period and has a single offspring)

• derives utility from his own consumption and from
bequests

• has a budget constraint of the form: c(t) + b(t) ≤ y(t)

• Let the intergenerational discount factor be β and assume
that the offspring will have an income w.

• The utility of an individual can be written as

u(c(t)) + βV(b(t) + w)
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• The value of an individual can be written as

V(y(t)) = max
c(t)+b(t)≤y(t)

{u(c(t)) + βV(b(t) + w) (3)

• As we see later, under some (relatively mild) conditions
this is equivalent to maximizing

∞∑
s=0

βsu(ct+s)
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The representative firm

• When there are no externalities and all factors are priced
competitively, we can represent the production side with a
representative firm.

• We do not need to worry about income effects here.
• The next slide states this more formally (for proof, see
Acemoglu p. 158)

• Notations:
• p · y =

∑N
j=1 pjyj

• F is the set of firms in the economy
• the aggregate production possibilities set of the economy
is

Y ≡

∑
f∈F

yf : yf ∈ Yf for each f ∈ F


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Theorem
Consider a competitive production economy with
N ∈ N ∪ {+∞} commodities and a countable set F of firms,
each with a production possibilities set Yf ∈ RN. Let p ∈ RN+ be
the price vector in this economy and denote the set of profit
maximizing net supplies of firm f ∈ F by Ŷf(p) ⊂ Yf (so that for
any ŷf ∈ Ŷf(p), we have p · ŷf ≥ p · yf for all yf ∈ Yf). Then there
exists a representative firm with production possibilities set
Y ⊂ RN and a set of profit maximizing net supplies Ŷ(p), such
that for any p ∈ RN+, ŷ ∈ Ŷ(p) if and only if ŷ =

∑
f∈F ŷf for

some ŷf ∈ Ŷf(p) for each f ∈ F .
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Problem formulation

• Consider a discrete time infinite-horizon economy that
admits a representative household

• the HH’s utility is given by
∞∑
t=0

βtu(ct), (4)

0 < β < 1
• In continuous time the problem takes the form∫ ∞

0
exp(−ρt)u(c(t))dt, (5)

where ρ is the discount rate.
• To see the connection between (4) and (5), think about
continuous compound interest rate.
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Welfare theorems

• We are interested in economic growth but there is a
connection between competitive equilibrium and Pareto
optima that turns out to be useful.

• Let’s first define the structure of the economy.
• After that, we can define a competitive equilibrium and a
Pareto efficient allocation for this economy.
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Consumers

• Assume that we have a finite number of households but
infinite (countable) number of commodities.

• Denote HH h’s consumption bundle as xh = {xhj }
∞
j=0, where

h ∈ H and xh ∈ Xh ⊂ RN+ (i.e. Xh is the consumption set for
household h).

• An interpretation: an infinite number of days and for each
day there is a finite number of goods. That is
{x̃h1,t, ..., x̃hN,t} ∈ X̃ht ⊂ RN+ for some N ∈ N and xh = {x̃ht }∞t=0

• Moreover, ωh = {ωhj }
∞
j=0 is the endowment bundle for h.
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• The Cartesian product of all consumption sets
X ≡

∏
h∈H xh gives the aggregate consumption set of the

economy.
• Moreover, x ≡ {xh}h∈H and ω ≡ {ωh}h∈H describe the
entire consumption allocation and endowments in the
economy.

• Each household has a well-defined preference ordering
over consumption bundles that can be represented with a
real valued utility function: Uh : Xh → R.

• Assume that Uh is non-decreasing in each of its
arguments.

• Let U ≡ {Uh}h∈H be the set of utility functions.
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Production

• Finite number of firms represented by the set of F .
• Each firm f ∈ F is characterized by a production set Yf

which specifies the levels that the firm can produce for a
given set of inputs.

• An example: only labor and a final good, Yf would include
pairs (−l, z) such that with labor input l the firm can
produce at most z.

• We assume that if yf ∈ Yf, then λyf ∈ Yf for any λ ∈ R+
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• Let Y ≡
∏
f∈F Yf represent the aggregate production set

and y ≡ {yf}f∈F such that yf ∈ Yf for all f (or equivalently
y ∈ Y ).

• Finally we need to specify the ownership structure of
firms (who gets the potential profits).

• A sequence of profit shares represented by
θ ≡ {θhf }f∈F ,h∈H, such that θhf ≥ 0 for all f and h, and∑

h∈H θhf = 1 for all f ∈ F .
• Thus, θhf is the share of firm f profits that go to household
h.
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The definition of an economy

• We can define an economy as E ≡ {H,F ,U,ω, Y, X,θ}
• That is for a given set of households and firms an
economy is described by preferences, endowments,
production sets, consumption sets and an allocation of
shares.

• An allocaton for this economy is (x, y) such that x and y
are feasible: x ∈ X, y ∈ Y and∑

h∈H
xhj ≤

∑
h∈H

ωhj +
∑
f∈F

yfj ,

for all j ∈ N
• We can no discuss how resources are allocated (or how
they should be allocated) in this economy.
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Competitive equilibrium

• A price system is a sequence p ≡ {pj}∞j=0 such that pj ≥ 0
for all j.

• One of the goods can be chosen as numeraire (i.e., its
price is set to 1).

• As before, p · z ≡
∑∞

j=0 pjzj.
• A competitive equilibrium for economy
E ≡ {H,F ,U,ω, Y, X,θ} is given by an allocation
(x∗ = {xh∗}h∈H, y∗ = {yf∗}f∈F ) and a price system p∗ such
that...
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1. The allocation is feasible, i.e., x∗ ∈ X and y∗ ∈ Y and∑
h∈H

xh∗j ≤
∑
h∈H

ωhj +
∑
f∈F

yf∗j ,

for all j ∈ N.
2. For every firm f ∈ F , yf∗ maximizes profits:

p∗yf ≥ p∗yf.

for all yf ∈ Yf.
3. For every household h ∈ H, xh∗ maximizes utility

Uh(xh∗) ≥ Uh(xh)

for all x such that xh ∈ Xh and
p∗xh ≤ p∗ ·

(
ωh +

∑
f∈F θhf y

f
)
.
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• A feasible allocation (x, y) for economy
E ≡ {H,F ,U,ω, Y, X,θ} is Pareto optimal if there exists no
other feasible allocation (x̂, ŷ) such that x̂h ∈ Xh for all
h ∈ H, ŷf ∈ Yf for all f ∈ F ,∑

h∈H
x̂hj ≤

∑
h∈H

ωhj +
∑
f∈F

ŷfj ,

for all j ∈ N and
Uh(x̂h) ≥ U(xh)

for all h ∈ H with at least one strict inequality in the
previous relationship.
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First welfare theorem

• Suppose that (x∗, y∗,p∗) is a competitive equilibrium of
economy E ≡ {H,F ,U,ω, Y, X,θ}

• with H finite
• Assume that all households are locally non-satiated (for
all h ∈ H at each xh ∈ Xh, Uh(xh) is strictly increasing at
least one of its arguments and Uh(xh) < ∞)

Then (x∗, y∗) is Pareto optimal.
• Proof of the first welfare theorem based on two ideas

• if another allocation Pareto dominates the competitive
equilibrium, then it must be non-affordable in the
competitive equilibrium

• any competitive equilibrium already maximizes the set of
affordable allocations.
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proof by contradiction

• suppose that there exists a feasible (x̂, ŷ) such that
Uh(x̂h) ≥ Uh(xh∗) for all h ∈ H and Uh(x̂h) > Uh(xh∗) for all
h ∈ H′ where H′ is a non-empty subset of H

• Since (x∗, y∗,p∗) is a competitive equilibrium, it must be
that for all h ∈ H

p∗ · x̂h ≥ p∗xh∗ = p∗ ·

ωh +
∑
f∈F

θhf y
f∗

 (6)

and for all h ∈ H′

p∗ · x̂h > p∗ ·

ωh +
∑
f∈F

θhf y
f∗

 (7)
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• summing (6) over H′ and (7) over H′ and combining

p∗·
∑
h∈H

x̂h > p∗·
∑
h∈H

ωh +
∑
f∈F

θhf y
f∗

 = p∗·

∑
h∈H

ωh +
∑
f∈F

yf∗


(8)
as sums are finite we can change the order of summation.

• Finally, since y∗ is profit maximizing at prices p∗

p∗ ·
∑
f∈F

yf∗ ≥ p∗ ·
∑
f∈F

yf (9)

for any {yf}f∈F with yf ∈ Yf for all f ∈ F .
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• However, by feasibility of x̂h∑
h∈H

x̂hj ≤
∑
h∈H

ωhj +
∑
f∈F

ŷfj (10)

for all j.
• Thus,

p∗·
∑
h∈H

x̂h ≤ p∗·

∑
h∈H

ωh +
∑
f∈F

ŷf
 ≤ p∗·

∑
h∈H

ωh +
∑
f∈F

ŷf∗

(11)

• This contradicts with (8).
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Second welfare theorem

• The converse of first welfare theorem.
• It states that any Pareto optimal allocation can be
decentralized as a competitive equilibrium.

• Requires assumptions such as convex consumption and
production sets and continuous quasi-concave utility
functions +additional technical assumptions (changes in
allocations that are very far in the future should not have
a large effect).

• The second welfare theorem and a normative
representative HH allow us to characterize the optimal
growth path that maximize the utility of the representative
household and assert that this will correspond to the
competitive equilibrium.
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