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Lecture 3:
Neoclassical Growth, an introduction
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Ramsey model in discrete time (ref:

Heer and Maussner, ch 1)



• How much should a country save (Ramsey, 1928)?
• Like the Sollow model but with an endogenous saving rate.
• The most basic DGE model.
• The core of many macroeconomic models.
• Also known as the Ramsey-Cass-Koopmans model or the
neoclassical growth model.

• We start with a finite-time version with a constant labor
force and no technological growth.

• Let’s focus on the planner’s problem where the planner
maximizes the utility of the representative household
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• Time t is divided into intervals of unit length and extends
from t=0 to t=T.

• The production function F(Nt, Kt) has the usual properties
• F(N, 0) = 0
• F is strictly increasing in both of its arguments
• concave
• twice continuously differentiable

• The representative agent does not value leisure and seeks
to maximize utility function

U(C0, C1, ..., CT) (1)

• The economy’s resource constraint is given by

Yt + (1− δ)Kt ≥ Ct + Kt+1, (2)

where 0 < δ < 1.
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• We can simplify the notation

f(Kt) ≡ F(N, Kt) + (1− δ)Kt (3)

• The planner’s problem is given by

max
{C0,...,CT,K1,...,KT+1}

U(C0, C1, ..., CT)

st

Kt+1 + Ct ≤ f(Kt)
0 ≤ Ct
0 ≤ Kt+1

for all t = 0, ..., T

,

where K0 is given.

5



• This is a standard non-linear programming problem and
thus we can apply the Kuhn-Tucker theorem (U(·) and f(·)
are strictly concave, strictly increasing and twice
differentiable).

• To proceed, let’s write the following Lagrangian:

L = U(C0, ..., CT) +
T∑
t=0

[λt(f(Kt)− Ct − Kt+1)

+ µtCt + ωt+1Kt+1]

• NB: ωt are just Lagrangean multipliers here (not the
endowments as they were in the previous lecture).
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• We get the following FOCs

∂U(·)
∂Ct − λt + µt = 0 t = 0, ..., T

−λt + λt+1f′(Kt+1) + ωt+1 = 0 t = 0, ..., T− 1
−λT + ωT+1 = 0

λt(f(Kt)− Ct − Kt+1) = 0 t = 0, ..., T
µtCt = 0 t = 0, ..., T

ωt+1Kt+1 = 0 t = 0, ..., T,

where λt ≥ 0, µt ≥ 0, ωt ≥ 0 for all t.
• As usually, the multipliers value the severeness of the
respective constraint (the ’shadow price’).

• A constraint that does not bind has a multiplier zero.
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• We can use the Inada conditions, ∂U(·)∂Ct → ∞ when
Ct → 0∀t , to rule out corner solutions Ct = 0.

• This implies µt = 0 ∀t, thus ∂U(·)
∂Ct = λt

• Moreover, since we assumed f(0) = 0, positive
consumption also requires Kt > 0 from period t = 0
through period t = T.

• Thus, ωt+1 = 0 for t = {0, ..., T− 1}.
• Finally since U(·) is strictly increasing,
f(Kt)− Ct − Kt+1 = 0 ∀t
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• Putting all pieces together, we get following
characterization of optimal solution

Kt+1 + Ct = f(Kt) (4)

∂U(C0,...,CT)
∂Ct

∂U(C0,...,CT)
∂Ct+1

= f′(Kt+1) (5)

λTKT+1 = 0 (6)

• The LHS of (5) is the marginal rate of substitution between
two periods and its RHS gives the compensation for an
additional unit of saving.

9



• Since utility is increasing in consumption, λT > 0, and so
KT+1 = 0 (it is optimal to consume everything in the last
period).

• The optimal plan is given by

Kt+1 + Ct = f(Kt) (7)

∂U(C0,...,CT)
∂Ct

∂U(C0,...,CT)
∂Ct+1

= f′(Kt+1) (8)

and the two boundary conditions, KT+1 = 0 and initial
level of capital K0
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The deterministic infinite-horizon Ramsey model

• Note that, (8) depends on the entire time profile of
consumption (→ need to solve 2T− 1 simultaneous
equations).

• if T→ ∞, we cannot solve this system.
• To circumvent this problem, we restrict to problems that
have a recursive structure (i.e., the problems pose
themselves in each period the same way)

• For the Ramsey problem, we need to assume that U(·)
takes the form stated in lecture 2 eq(1).
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• We continue to assume that lim
C→0

u′(C) = ∞, so
consumption is always positive and we can ignore Ct ≥ 0

• The Ramsey problem with infinite time horizon

max
{c0,K0,...

∑∞
t=0 β

tu(Ct)

Ct + Kt+1 ≤ f(Kt) ∀t
0 ≤ Kt+1
K0 given

• We can derive the necessary conditions by maximizing the
following Lagrangian with respect to C0, K1, C1, K2, ...

L =
T∑
t=0

βt [u(Ct) + λt(f(Kt)− Ct − Kt+1) + ωt+1Kt+1]
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• In order to keep consumption positive, Kt > 0 has to hold
for all t until ”the end of time”.

• Moreover, assuming strictly increasing u(ct) implies
f(Kt+1) = Ct+1 + Kt+1

• Thus, we have the following FOCs

u′(Ct) = λt (9)

λt = βλt+1f′(Kt+1) + ωt+1 (10)
f(Kt) = Ct + Kt+1 (11)
lim
T→∞

βTλT+1KT+1 = 0 (12)

• Plugging (9) into (10) and (12)

u′(Ct) = βf′(Kt+1)u′(Ct+1) (13)

Ct + Kt+1 = f(Kt) (14)
lim
T→∞

βTu′(CT)KT+1 = 0 (15)
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• Eq (13) is referred to the Euler equation for consumption.
• It is equivalent to condition (8) (given the preference
specification)

• The flow budget constraint, eq (14) also looks familiar.
• Eq (15) is the so called transversality condition. It is the
limit of terminal condition λTKT+1 = 0

• It states that the present value of the terminal capital
stock must approach zero.
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• We can solve Ct from (14) and then plug it into (13) and (15)

u′(ft(Kt)− Kt+1)
u′(ft+1(Kt+1)− Kt+2)

= βf′(Kt+1) (16)

lim
T→∞

βTu′(f(KT)− KT+1)KT+1 = 0 (17)

• We have reduced the system of difference equations into
a second order difference equation.

• Transversality condition (17) and the initial level of capital,
K(0), give us a unique solution to (16).
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Transversality condition

• Solve u′(CT) from (13) (i.e., express u(CT) with the help of
u(CT−1)and f′(KT)) and plug it into (15)

0 = lim
T→∞

βTu′(CT)KT+1 = lim
T→∞

βT[
u′(CT−1)
βf′(KT)

]KT+1

Iterating backwards gives

0 = lim
T→∞

βT[
u′(CT−2)

β2f′(KT)f′(KT−1)
]KT+1

0 = lim
T→∞

[
u′(C0)∏T
i=1 f′(Ki)

]KT+1
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• The transversality condition states that the present value
KT+1, measured in the relevant units, has to approach zero
when T→ ∞.

• If the present value was positive, the consumer would be
saving too much. The representative agent could increase
her welfare by increasing consumption.
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Solving the model

• We have seen that we can characterize the solution with
two first order difference equations (or with one second
order difference equation) +the transversality condition

• Generally, we can only solve these equations numerically.
• However, sometimes with particular functional forms we
can solve the model analytically.

• Moreover, as with the Solow model,we can always solve
the steady state analytically.

• It is also possible to analyze transition dynamics
graphically (we will postpone this to the week 4)
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The steady state

• At a steady state Ct = Ct+t and Kt = Kt+1 for all t.
• Thus,

u′(C∗) = βf′(K∗)u′(C∗)

C∗ + K∗ = f(K∗)

or
1
β

= f′(K∗) (18)

C∗ = f(K∗)− K∗ (19)
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An example: a model with an analytical solution

• Assume that the periodic utility function takes a quadratic
form

u(Ct) = u1Ct −
u2
2 C

2
t ,

where u1,u2 > 0 and that the production function takes a
linear form

f(Kt) = AKt, A > 0.

• Now (13) and (14) can be written as

Ct+1 =
u1
u2

(1− 1
βA) +

1
βACt (20)

Kt+1 = AKt − Ct (21)
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• We will use the method of undetermined coefficients.
• Guess that the consumption, Ct, is a linear function of
current capital stock Kt

Ct = c1 + c2Kt (22)

• If this guess is valid, it has to be consistent with (20), (21)
and the transversality condition.

• Substituting (22) into (20) gives

c1 + c2Kt+1 =
u1
u2

(
1− 1

βA

)
+

1
βA(c1 + c2Kt)

c1 + c2(AKt − c1 − c2Kt) =
u1
u2

(
1− 1

βA

)
+

1
βA(c1 + c2Kt)
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• The last equation holds for arbitrary values of Kt if
constant terms on both sides sum to zero

0 = c1
(
1− c2 −

1
βA

)
− u1
u2

(
1− 1

βA

)
(23)

and if also the coefficients of variable Kt sum to zero

0 = c2A− c22 −
1
βAc2

c2 = A− 1
βA (24)

• One can solve c1 by inserting (24) into (23).
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• Next, we can plug our consumption policy into (21)

Kt+1 =
1
βAKt − c1 (25)

• If 1/β < A, the capital stock approaches the stationary
solution

K∗ = − c1
1− 1

βA
(26)

from any given intial value K0.
• The consumption converges to

C∗ = u1
u2

(27)

• Together these imply that also transversality condition (15)
holds.
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Summary of the simple Ramsey model in discrete time

• The planner’s problem is

max
{c0,K0,...

∑∞
t=0 β

tu(Ct)

Ct + Kt+1 ≤ F(Kt) + (1− δ)Kt ∀t
0 ≤ Ct
0 ≤ Kt+1
K0 = K̂

• Assuming ∂U(·)
∂Ct → ∞ when Ct → 0∀t, implies that we can

”ignore” the constraint 0 ≤ Ct and 0 ≤ Kt+1 as long as we
remember to add the transversality condition (TVC)

• Moreover, since u(·) is strictly increasing in c,

Ct + Kt+1 = F(Kt) + (1− δ)Kt ∀t
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• Thus, we can just solve the following Lagrangian

L =
T∑
t=0

βt [u(Ct) + λt(F(Kt) + (1− δ)Kt − Ct − Kt+1)] (28)

• The first order conditions with respect to Ct and Kt+1

u′(Ct) = λt

λt = λt+1(F′(Kt+1) + (1− δ))

• Moreover, the flow budget constraint

Ct + Kt+1 = F(Kt) + (1− δ)Kt

and TVC: limβTu′(CT)KT+1 = 0 as T→ ∞ have to hold.
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• The solution is a sequence {Ct, Kt+1} such that

u′(Ct) = β(F′(Kt+1) + (1− δ))u′(Ct+1) (29)

Ct + Kt+1 = F(Kt) + (1− δ)Kt (30)

for all t, and

limβTu′(CT)KT+1 = 0, T→ ∞ (31)

and K0 = K̂
• NB: we ditched the notation f(K) ≡ F(K)− (1− δ)K.
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Numerical solutions (ref: Heer and
Maussner, ch3)



Finite-horizon models

• Solving T period problem, we need to find a sequence of
capital such that

U′(F(Kt + (1− δ)Kt − Kt+1) =β(F′(Kt+1) + (1− δ))

∗ u′(F(Kt+1 + (1− δ)Kt+1 − Kt+2)

holds for t = 0, ..., T− 1 and KT+1 = 0
• For a given capital stock K0, this is a system of T unknown
variables, K1, ..., KT and T non-linear equations.

• We can use a non-linear equation solver to get a
numerical solution.
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Non-linear solvers

• Suppose you want to find an x such that G(x) = 0.
• A typical structure for non-linear solvers is the following
iterative scheme:

xs+1 = xs + µ∆xs, s = 0, 1, ...

• The solvers start with an initial guess of the solution , x0,
determine a direction of change, ∆x, and a step length µ,
then proceed to the next guess of the solution, x1.

• This process continues until either G(xs) ≈ 0 or xs+1 ≈ xs.
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• How to choose the initial guess x0 = (K01 , K02 , ..., K0T)?
• Need to make sure that consumption stays positive in
each period.

• You can try to set K equal to a fraction of F(K0) + (1− δ)K0
for each period.

• The next problem is that the algorithm may end up
selecting a point where consumption is negative. If, for
example, u(c) = ln (c), this will result in an error message.

• One solution is to insert a penalty function that hopefully
prevents the algorithm from choosing these points.
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Infinite-horizon models

• The approach used to solve finite-horizon models can be
generalized to infinite-horizon models by taking
advantage of the models’ property to approach a steady
state.

• We just replace KT+1 = 0 with KT+1 = K∗.
• Given that there is a stable steady state, the model will
converge to that from arbitrary initial conditions.

• practical problems:
• How to choose T?
• How to choose the initial guess, i.e., (K01 , ..., K0T , K∗)?
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How to choose T

• T has to be large enough so that KT+1 is close to K∗

• A method for choosing T:
1. Start with some small T and solve the model.
2. Then increase T to T’ and solve this larger system.
3. Compare the first T elements of the latter solution to those
of the first solution. if the two solutions are close, T is
large enough.

4. Otherwise, increase T and return to step 1.
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Choosing the initial value

• The approach used previously does not necessarily work.
If K0 is small relative to K∗, CT would be negative.

• Another easy solution would be to set K0t = K∗ for
t = 1, ..., T. However, now it could be that C0 < 0 if K0 is
small enough.

• A method for selecting the initial value:
1. Choose K′0 that is close to K∗ and use a non-linear solver to
get a solution to this problem

2. Use this solution as a starting value for smaller K′0
3. Continue this until K′0 has reached K0.
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