Advanced Macroeconomics 1

Oskari Vähämaa (University of Helsinki)

September 3, 2019

Office: Room 310

Email: oskari.vahamaa@helsinki.fi

Office hour: Wednesdays 12-13

TA:

Teemu Pekkarinen

Course materials

- Slides and the problem set can be downloaded at Moodle (https://moodle.helsinki.fi/course/view.php?id=35351)
- Enrolment key: Daron
- The main reference:
 - Introduction to Modern Economic Growth by Acemoglu (2008)
- Additional reading:
 - Recursive Macroeconomic Theory by Ljungqvist and Sargent, 3rd edition (2012) (or 2nd edition, 2004)
 - The New Dynamic Public Finance by Kocherlakota (2010)
 - Dynamic General Equilibrium Modeling: Computational Methods and Applications by Heer and Maussner, Springer 2nd edition (2010)

- Four problem sets
 - Handle it either by email to the TA, before the exercise session, or on paper, at the beginning of the exercise session.
 - Achieving 40% of points is required for taking the exam
- The exam counts for 100% of the final grade

The road map for the autumn

- Adv Macroeconomics 1: introduction to
 - growth theory
 - dynamic optimization
 - workhorse models of macro
- Adv Macroeconomics 2
 - the intertemporal savings decision under uncertainty
 - incomplete markets and industry equilibrium models
 - search and unemployment

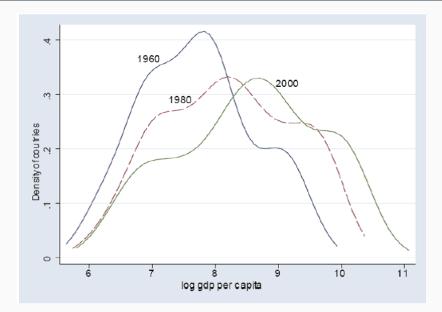
Overview of the course

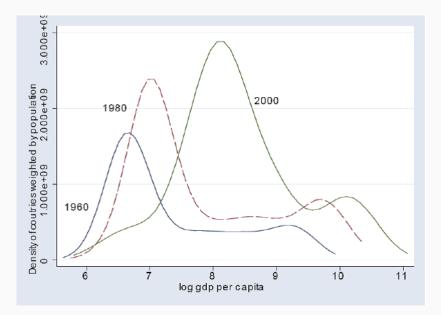
- Economic growth and data, Solow model
- Neoclassical growth model in discrete time
- Dynamic programming and optimal control
- Neoclassical growth model in continuous time
- Overlapping generations and growth
- Introduction to endogenous technological change

Lecture 1: A look at the data and the Solow model

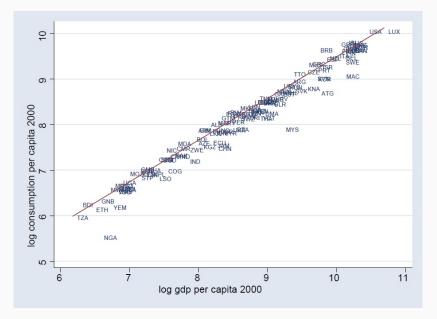
Cross-country data (ref: Acemoglu, ch 1)

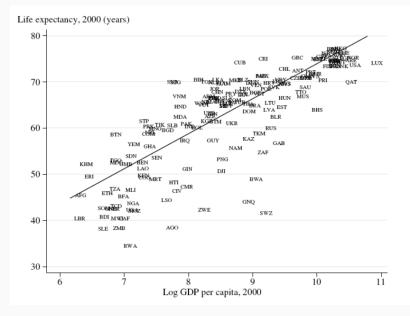
Cross-country income differences





Income and welfare





- Comparisons between the top 20% countries and the poorest 20%
 - infant rate mortality: 4/1000 and 200/1000
 - daily calorie intake one third lower in the poor countries
- 2.1 billion lack access to safe water at home
- 4.5 billion, lack proper sanitation

Economic growth and income differences (Scheidel, 2009)

Date	Location	Wheat wage (in liters)
18 th c. BCE	Southern Mesopotamia	(6.2-9.4?)
	(prescriptive/conventional)	
17 th c. BCE	Southern Mesopotamia	4-7.5
15 th /14 th c. BCE	Nuzi	6-6.4
7 th /5 th c. BCE	Southern Mesopotamia	4-17.3 (8-12?)
late 5th c. BCE	Athens	8.7
320s BCE	Athens	13-15.6
321 BCE	Babylon	(1.3*)
3rd/early 2nd c. BCE	Delos	3.2-11.1 (4.6-8.6?)
260s/250s BCE	Egypt	3.4-4.2
210-180s BCE	Egypt	3.2-6.2
160s-120s BCE	Egypt	1.6-1.9
120s-90s BCE	Egypt	1.3-5.8 (2.6-3.1?)
93 BCE	Babylon	(2-2.4*)
1 st c. BCE/CE	Rome	(>5.9?? <11.8-17.2??)
1 st c. CE	Pompeii	(4.6-11.5??)
1 st /2 nd c. CE	Palestine	(8.6?? 4.3-17.2?)
100-160s CE	Egypt	4.9
190s-260s CE	Egypt	4.9
301 CE	Roman Empire	4.7
314 CE	Egypt	(1.9[-3.2]*)
315 CE	Egypt	(<u>5.1[</u> -8.5]?*)
5 th /6 th c. CE	Eastern Mediterranean	2.8-3.9
570s/early 8 th c. CE	Egypt	>7.7-13.4
760s CE	Mesopotamia	3.6-5.3
late 8 th /early 9 th c.	Egypt	(<u>3.2-10</u> ?)
c.1000 CE	Constantinople	(<u>5.6</u> ??)
c.1000-1050 CE	Egypt	(>?) <u>4.3-5.3</u>
11 th c. CE	Mesopotamia	6.1
11 th /13 th c. CE	Cairo	7.5-13.5
12 th c. CE	Egypt	6.4-10.6
12 th /13 th c. CE	Constantinople	(<u>4.2-9.3</u> ?)
13 th c. CE	Mesopotamia	9

Note: "?"= uncertain; "??"= highly uncertain; "*"= single source. All uncertain estimates are in parentheses. Underlined figures or ranges fall within, overlap with, or encompass a "core" range of 3.5-6.5. liters while bold figures or ranges in their entirely exceed the upper limit of this "core" range.

	1500-20	1600-20	1680–1700	1780–1800
In litres of rye				
Warsaw	-	38.5	25.3	22.8
Cracow	45.1	31.1	21.1	18.3
Lvov	41.3	10.5	-	-
Danzig	15.1*	10.6	13.1	8.5
Ausburg	8.1	5.7	7.2	5.9
Leipzig	-	6.4	12.1	-
Stockholm	-	14.4	17.0	8.7
In litres of wheat				
Vienna	18.5**	8.8	8.1	5.7***
Holland	14.0	11.4	16.6	9.9
Ghent	15.0	8.6	7.5	6.9
Southern England	13.2	6.0	8.1	8.1
Paris	11.9	9.I	7.9	9.9
Valencia/Seville	13.7	10.0	16.2	6.2
Florence/Milan	6.6	5-3	9.3	6.0
Coefficient of variation ****	0.67	0.70	0.43	0.44
Excl. Cracow	0.28	0.27	0.36	0.23

Table 3. Estimates of wages in litres of wheat or rye in 15 cities/regions, 1500-20 to 1780-1800.

Notes: * 1530-39; ** 1520-29; *** 1770-79; **** excl. Leipzig, Lvov, Stockholm and Warsaw.

Table 1: *

Van Zanden (1999)

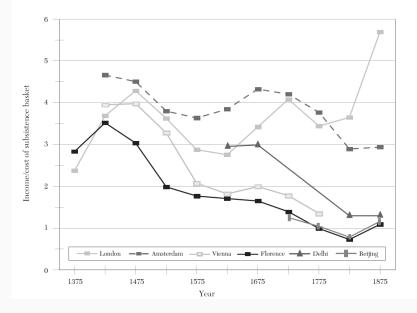
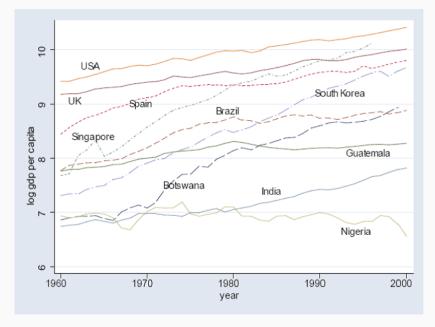
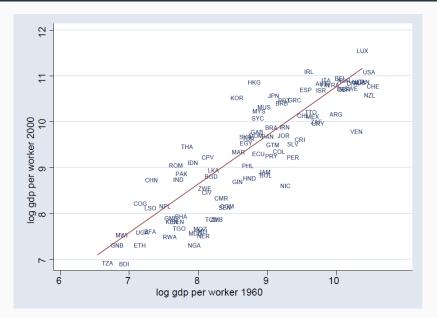
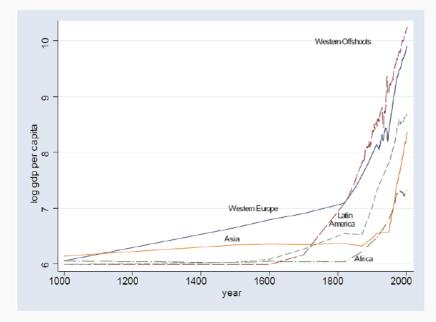


Figure 1: Income/cost of subsistence basket (Allen, 2008)



Origins of Income differences and Economic growth





	% change in avg income per	% change in poverty rate per	
	year	year	
Strong contraction Moderate	-9.8	23.9	
contraction	-1.9	1.5	
Moderate expansion	1.6	-0.6	
Strong expansion	8.2	-6.1	

data source: Ravallion and Chen (1997)

- What explains the large differences in income across countries?
- Why do some countries grow rapidly while others do not (the poorest countries tend to have the lowest growth rates)?
- What sustains economic growth?
- What is the relationship between economic policies and growth?

The Solow model (ref: Acemoglu, ch 2)

- \cdot A simple dynamic model which can be used to analyze
 - growth
 - cross-country differences
- Developed by Solow (1956) and Swan (1956)
- Essentially a neoclassical growth model with exogenous growth

Environment

- $\cdot\,$ Closed economy with a unique final good
- The economy is inhabited by a large number of identical households
- HHs save a constant exogenous fraction $s \in (0, 1)$ of their income.
- A representative firm with a production function

$$Y(t) = F(K(t), L(t), A(t)),$$
 (1)

where Y(t) is the aggregate output, K(t) is the capital stock, L(t) is employment and A(t) is technology at time t.

- Technology is nonexcludable and nonrival.
- The production function F
 - \cdot is twice differentiable
 - + satisfies $F_K > 0$, $F_L > 0$, $F_{KK} < 0$ and $F_{LL} < 0$
 - is homogeneous of degree 1, i.e., $F(\lambda K, \lambda L, A) = \lambda F(K, L, A)$
 - satisfies the Inada conditions, i.e.,

 $\lim_{K \to 0} F_K(K, L, A) = \infty,$ $\lim_{K \to \infty} F_K(K, L, A) = 0,$ $\lim_{L \to 0} F_L(K, L, A) = \infty,$ $\lim_{L \to \infty} F_L(K, L, A) = 0,$

for all A. Moreover, F(0, L, A) = 0 for all L and A.

- Markets are competitive (agents take prices as given)
- \cdot The HHs own the factors of production
- They inelastically supply $\overline{L}(t)$ units of labor.
- Thus, labor market clearing requires that for some non-negative wage rate

$$L(t) = \bar{L}(t) \tag{2}$$

where L(t) is the demand for labor.

• The HHs rent capital to the firms. The rental rate of capital is *R*(*t*) and the capital market clearing condition is

$$K(t) = \overline{K}(t),$$

• Capital depreciates at rate δ . Thus, the HHs face interest rate $r(t) = R(t) - \delta$

• Firm's (static) problem

$$\max_{K \ge 0, L \ge 0} F(K(t), L(t), A(t)) - R(t)K - w(t)L$$
(3)

- A competitive equilibrium requires that firms maximize profits and factor markets clear (\longrightarrow zero profits).
- Factor prices must satisfy the following FOCs

$$w(t) = F_L(K(t), L(t), A(t))$$
 (4)

$$R(t) = F_{\mathcal{K}}(\mathcal{K}(t), \mathcal{L}(t), \mathcal{A}(t))$$
(5)

The Solow model in discrete time

 \cdot The law of motion for capital is

$$K(t+1) = (1-\delta)K(t) + I$$
 (6)

• Aggregate investment is equal to saving

$$I(t) = S(t) = Y(t) - C(t) = sY(t),$$
(7)

where we have used the assumption of a constant saving rate.

• Combining eqs (6) and (7) gives the fundamental law of motion of the Solow model

$$K(t+1) = sF(K(t), L(t), A(t)) + (1-\delta)K(t).$$
(8)

Definition

In the discrete time Solow model for a given $\{L(t), A(t)\}_{t=0}^{\infty}$ and K(0), an equilibrium path is a sequence $\{K(t), Y(t), C(t), w(t), R(t)\}_{t=0}^{\infty}$ such that K(t) satisfies (8), Y(t) is given by (1), C(t) = (1 - s)Y(t) and w(t) and R(t) are given by (4) and (5).

EQM without population growth and technological progress

• Let's denote the capital-labor ratio as

$$k(t) \equiv \frac{K(t)}{L(t)} \tag{9}$$

• Using the assumption of constant returns to scale

$$y(t) = F(\frac{K(t)}{L}, 1, A) \equiv f(k(t)),$$
 (10)

where we have normalized A = 1

• Moreover, R(t) = f'(k(t)) and w(t) = f(k(t)) - k(t)f'(k(t))

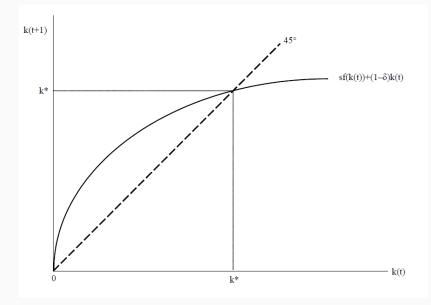
• Dividing both sides of (8) by L gives

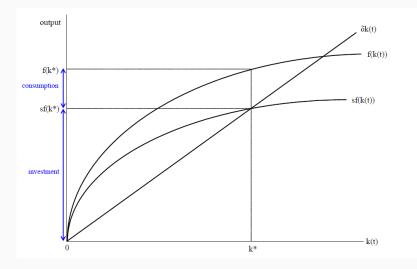
$$k(t+1) = sf(k(t)) + (1-\delta)k(t)$$
(11)

- This equation pins down the key equilibrium object of the model, the capital labor ratio.
- A steady state equilibrium is an equilibrium path such that $k(t) = k^*$ for all t.
- Plugging $k(t) = k^*$ into (11) gives

$$\frac{f(k^*)}{k^*} = \frac{\delta}{s} \tag{12}$$

• Note that k = 0 is also a (non-stable) steady state.





- What happens to k^* if s is altered?
- Steady state consumption $c^*(s) = (1-s)f(k^*(s)) = f(k^*(s)) - \delta k^*(s)$
- There exists a saving rate *s*_{gold} that maximizes steady state consumption
- Using implicit function theorem one gets

$$\frac{\partial c^*(s)}{\partial s} = [f'(k^*(s)) - \delta] \frac{\partial k^*}{\partial s}$$
(13)

• Thus, k^*_{gold} is such that

$$f'(k_{gold}^*) = \delta \tag{14}$$

Towards continuous time

- x(t+1) x(t) = g(x(t))
- \cdot We can approximate the growth between periods as

$$x(t + \Delta t) - x(t) = \Delta t * g(x(t))$$
(15)

- Divide both sides by Δt and take limits

$$\lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \dot{x} \simeq g(x(t))$$
(16)

The fundamental equation in continuous time

Assume that the labor force grows as

$$L(t) = exp(nt)L(0)$$
(17)

- Note that $\dot{k}(t) = \frac{\dot{k}(t)L(t)-\dot{L}(t)K(t)}{L(t)^2}$.
- Thus, $\frac{\dot{k}(t)}{k(t)} = \frac{\dot{k}(t)}{K(t)} \frac{\dot{L}(t)}{L(t)} = \frac{\dot{k}(t)}{K(t)} n.$
- Using eq (16), we get the law of motion of the capital

$$\dot{K}(t) = sF(K(t), L(t), A(t)) - \delta K(t).$$
(18)

• Using the previous two equations, we get the fundamental law of motion of the Solow model (in relative terms)

$$\frac{\dot{k}(t)}{k(t)} = \frac{sf(k(t))}{k(t)} - \delta - n \tag{19}$$

• This can also be written as

$$\dot{k}(t) = sf(k(t)) - (n+\delta)k(t)$$
(20)

- As before, steady state equilibrium is an equilibrium path such that k(t) does not change, i.e., k(t) = 0 for all t.
- From eq (20), it is easy to see that the steady state is given by

$$sf(k*) = (n+\delta)k*$$
(21)

- New capital is needed to replace the depreciated capital and to keep pace with population growth.
- This steady state is globally asymptotically stable and, starting from any k(0) > 0, k(t) converges to k*
- Thus, no sustained growth.

• We can use (21) in order to express the fundamental law of motion as

$$\frac{\dot{k}(t)}{k(t)} = (n+\delta)(\frac{f(k(t))/k(t)}{f(k^*)/k^*} - 1)$$
(22)

• If all countries converge to the same steady state, poor countries should grow faster.

- Assume that F(K(t), L(t), A(t) = AK(t) and A is a constant
- Plugging this into (19) gives

$$\frac{k(t)}{k(t)} = sA - \delta - n \tag{23}$$

- If $sA \delta n > 0$, there will be sustained growth in the capital-labor ratio (and output per capita)
- This would imply that the share of national income going to capital should increase.

- While output per capita has increased (more or less) at a constant rate,
 - the capital-output ratio
 - the interest rate
 - the distribution of income between capital and labor

have remained constant.

• A balanced growth path refers to an allocation that is consistent with these four facts.

Types of neutral technological progress

• Hicks-neutral

$$\widetilde{F}(K(t), L(t), A(t)) = A(t)F(K(t), L(t))$$

Solow-neutral

$$\tilde{F}(K(t), L(t), A(t)) = F(A(t)K(t), L(t))$$

Harrod-neutral

$$\tilde{F}(K(t), L(t), A(t)) = F(K(t), A(t)L(t))$$

• Balanced growth in the long run is only possible if technological progress is Harrod-neutral

Consider a growth model with aggregate production function

 $Y(t) = \tilde{F}(K(t), L(t), \tilde{A}(t)),$

where $\tilde{F} : \mathbb{R}^2_+ \times \mathcal{A} \to \mathbb{R}_+$ and $\tilde{A}(t) \in \mathcal{A}$ represents technology at time t (where \mathcal{A} is an an arbitrary set). Suppose that \tilde{F} exhibits constant returns to scale in K and L. The aggregate resource constraint is

$$\dot{K}(t) = Y(t) - C(t) - \delta K(t)$$

Moreover, suppose that there is a constant growth rate of population, $L(t) = \exp(nt)L(0)$ and that there exists $T\infty$ such that for all $t \ge T$, $\dot{Y}(t)/Y(t) = g_Y > 0$, $\dot{K}(t)/K(t) = g_K > 0$ and $\dot{C}(t)/C(t) = g_C > 0$. Then...

1. $g_Y = g_K = g_C$

 For any t > T, there exists a function F : ℝ²₊ → ℝ₊ homogeneous of degree 1 in its two arguments, such that the aggregate production function can be represented as

$$Y(t) = F(K(t), A(t)L(t)),$$
 (24)

where $A(t) \in \mathbb{R}_+$ and

$$\frac{\dot{A}(t)}{A(t)} = g = g_{\rm Y} - n. \tag{25}$$

The Solow model with technological progress

- Y(t) = F(k(t), A(t)L(t))
- $\cdot \frac{\dot{A}(t)}{A(t)} = g > 0$
- $\cdot\,$ As before, population grows at rate n
- Capital accumulates according to

$$\dot{K}(t) = sF(K(t), A(t)L(t)) - \delta K(t)$$
(26)

• We can stationarize the economy by dividing everything by A(t)L(t), i.e.,

$$k(t) = \frac{K(t)}{A(t)L(t)}$$

and

$$\hat{y}(t) = \frac{Y(t)}{A(t)L(t)} = f(k(t))$$

- Income per capita, y(t), is given by $\hat{y}(t) * A(t)$
- Differentiating k(t) with respect to time gives

$$\dot{k}(t) = \frac{\dot{k}(t)A(t)L(t) - K(\dot{A}(t)L(t) + A(t)\dot{L}(t))}{(A(t)L(t))^2}$$

and so

$$\frac{\dot{k}(t)}{k(t)} = \frac{\dot{K}(t)}{K(t)} - g - n$$

• Substituting for $\dot{K}(t)$ from (26) into (27) gives

$$\frac{\dot{k}(t)}{k(t)} = \frac{sF(K(t), A(t)L(t))}{K(t)} - \delta - g - n$$

• The fundamental equation can be written as

$$\frac{\dot{k}(t)}{k(t)} = \frac{sf(k(t))}{k(t)} - \delta - g - n \tag{27}$$

• This differential equation converges into a steady state which is given by

$$\frac{f(k^*)}{k^*} = \frac{\delta + g + n}{s} \tag{28}$$

The Solow model and the data (ref: Acemoglu, ch 3)

 $\cdot\,$ Take the aggregate production of the form

$$Y(t) = F(k(t), L(t), A(t))$$

and differentiate it with respect to time (and divide by Y(t) in order to get

$$\frac{\dot{Y}}{Y} = \frac{F_A A}{Y} \frac{\dot{A}}{A} + \frac{F_K K}{Y} \frac{\dot{K}}{K} + \frac{F_L L}{Y} \frac{\dot{L}}{L}$$
(29)

• Denote $g \equiv \frac{\dot{Y}}{Y}$, $g_K \equiv \frac{\dot{K}}{K}$, $g_L \equiv \frac{\dot{L}}{L}$, $x \equiv \frac{F_A A}{Y} \frac{\dot{A}}{A}$, $\varepsilon_k \equiv \frac{F_K K}{Y}$ and $\varepsilon_l \equiv \frac{F_L L}{Y}$

• Equation (29) implies

$$x = g - \varepsilon_k g_K - \varepsilon_l g_L \tag{30}$$

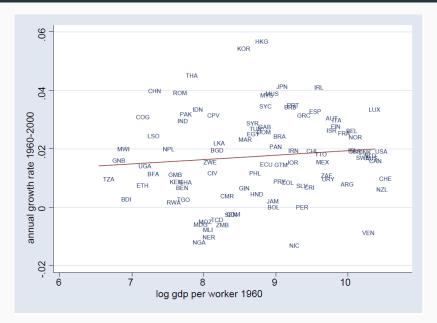
- As factor prices in competitive markets are given by $w = F_L$ and $R = F_K$, the elasticities ε_k and ε_l are equal to factor shares $\alpha_K = \frac{RK}{Y}$ and $\alpha_L = \frac{WL}{Y}$.
- Plugging these into (30), we get

$$x = g - \alpha_K g_K - \alpha_L g_L \tag{31}$$

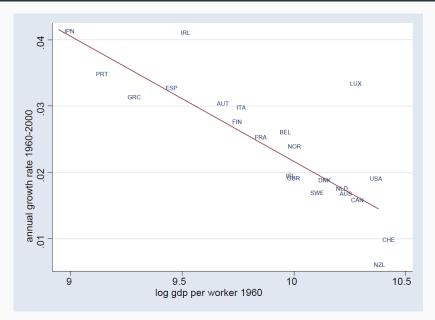
- Solow (1957) applied this framework to the US data. His results highlighted the importance of technological progress
- Critique: x is just a measure of ignorance

- If two countries have the same fundamental parameters and access to the same technology, these countries should converge to the same steady state.
- Moreover, a country with a lower "initial wealth" should grow at a faster rate.

Unconditional convergence (core OECD countries)



Conditional convergence



• The steady state of the Solow model with technological progress was given by

$$\frac{f(k^*)}{k^*} = \frac{\delta + g + n}{s} \tag{32}$$

- Assume that the production function takes the Cobb-Douglas form $F(K(t), L(t), A(t)) = K(t)^{\alpha} (L(t)A(t))^{1-\alpha} = \left(\frac{K(t)}{L(t)A(t)}\right)^{\alpha} L(t)A(t)$
- Thus, the steady state level of capital per effective unit of labor

$$k^* = \left(\frac{\mathsf{S}}{\delta + g + n}\right)^{\frac{1}{1 - \alpha}} \tag{33}$$

 \cdot At the balanced growth path

$$Y(t)/L(t) = y(t) = (k^*)^{\frac{\alpha}{1-\alpha}}A(t) = (\frac{s}{\delta+g+n})^{\frac{\alpha}{1-\alpha}}A(0)e^{gt}$$
$$\log(y(t)) = \frac{\alpha}{1-\alpha}\log(s) - \frac{\alpha}{1-\alpha}\log(\delta+g+n) + \log(A_0) + gt$$
(34)

Mankiw, Romer and Weil (1992)

• MRW estimate equation (34) using cross-country data on s and n, i.e,

$$\log(y(t)_i) = b + \frac{\alpha}{1-\alpha}\log(s_i) - \frac{\alpha}{1-\alpha}\log(\delta + g + n_i) + gt + \varepsilon_i$$

- They assume that
 - each country is in its steady state (i.e. in its BGP)
 - $A_{0i} = A * \epsilon$, where ϵ is part of the error term.
 - $\delta + g = 0.05$ for all countries
 - \cdot s and n do not correlate with the error term (and ϵ)
- If differences in technology are important, one would assume that variation in the error term is large.

Estimates of the Basic Solow Model			
	MRW	Updated data	
	1985	1985	2000
$\ln(s_k)$	1.42	1.01	1.22
	(.14)	(.11)	(.13)
$\ln(n+g+\delta)$	-1.97	-1.12	-1.31
	(.56)	(.55)	(.36)
$\operatorname{Adj} R^2$.59	.49	.49
Implied β	.59	.50	.55
No. of observations	98	98	107