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Lecture 8:
Neoclassical growth, further topics



An example of consumption
functions (ref: Acemoglu ch 8.2)



Consumption behaviour and the lifetime budget constraint

- In the previous lecture, we showed that the consumer’s
optimization leads (among other things) to the following
consumption Euler equation

= (r(t) — ») (1)

- This equation, however, does not by itself give us a unique
path for consumption (we need a boundary condition).

- To derive that, for a special case ¢,(c(t)) = 0, we need to
combine (1) with the (modified) lifetime budget constraint
(+TVC)



- To proceed, note that the average interest rate from 0 to t
can be written as

1o)=1 [ re0s @)

- Integrating, (1) we get

t _
c(t) = c(0) exp </O g(us()c(t)sds) (3)

- If e4c(t) is a constant, 8, (CRRA-utility), (3) simplifies to

c(t) = c(0) exp <F(t)9_ pt) (4)



- In the previous lecture, we wrote the lifetime budget
constraint as

/O (oLt exp ( /t Tr(s)ds) dt + A(T)

[ e ([ 19) et aen ([ oas),

(5)
- We can express this in a more common way by multiplying
it by exp (— fOT r(s)ds).

/Orc(t)L(t) exp (_ /Ot r(s)ds> - (_ /OTF(S)ds)A(T)

= /OT w(t)L(t) exp (— /Ot r(s)d5> dt + A(0),

(6)



- Divide everything by L(0) (remember that
L(t) = L(0) exp (nt)) and use F(t)t = fot r(s)ds,

.
/ c(t) exp (— (F(t) — n)t)dt + exp (—(F(T) — n)T)a(T)
° (7)
= /T w(t) exp (—(r(t) — n)t) dt + a(0),
0
- Taking the limit — oo and using the transversality
condition,

lim [a(T) exp (~(F(T) — m)T)] = ©, (®)

gives us the following standard expression for the lifetime
budget constraint

/OO c(t) exp (—(r(t) — n)t)dt = ao+/oo w(t) exp (—(r(t) — n)t)dt
0 0
(9)



Consumption policy

- Substituting eq (4), c(t) = c(0) exp (“%‘”), into the
budget constraint (9) gives

c(0) = [/Oooexp <<W _Z+n> t) dt} ) (10)

X [G(O) + /OOO w(t) exp(—(r(t) — n)t}

- (10) together with the Euler equation (eq(1) with
eu(c(t)) = 0) gives the entire path of utility maximizing
consumption for the household

- The same method can be applied also to discrete time
consumption problems.



Optimal growth, steady state and
transitional dynamics (ref: Acemoglu ch
8.3-8.5)



Optimal growth

- The planner’s problem in continuous time can be written

as
e /O exp (—(p — nyt)u(c(t))dt
subject to
R(t) = f(R(t)) — (n + 8)R(t) — c(b). (1)
and k(0)>0

- Writing the current-value Hamiltonian and modifying the
necessary conditions will give us the following conditions

qy _ 1 s
40 = ey V) =) (12

R(t) = f(R()) — (5 + N)R(E) - c(t) (13)




- Moreover, following a similar process as the one that
delivered eq(27) in lecture 7 and plugging u(t) into the
transversality condition gives

t—o0

lim [I?(t) exp (— /Ot(f’(l?(s)) —§—n)ds)| =0.  (14)

- Equations (12), (13) and (14) are necessary and sufficient
conditions for the optimal growth path

- These are exactly the same conditions that describe the
market equilibrium (see equations (30), (31) and (32))

- This is not a surprise, as we already knew that the welfare
theorems hold.



Steady state equilibrium

- Steady state requires that ¢(t) = 0 and R(t) = 0.
- If ¢(t) = 0 eq (12) implies

f(R)Y=p+46 (15)
which is the equivalent of the discrete-time optimal

growth model.
- Remember that we had to assume p > n thus,

rf=f(R)—=56>n (16)
(Piketty's "r>n"-theory)

- Given Rk*, the steady state consumption can be solved

from eq (13)
¢ = F(K) = (n + 6)k* (17)
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Equilibrium dynamics and the saddle path stability

- In the Solow model, the transitional dynamics were given
by one differential equation and we had a globally stable
solution since for x = g(x(t)) : 0 = g(x*), g(x) > 0Vx < x*
and g(x) < 0Vx > x*.

- Here the equilibrium is determined by a system of two
differential equations (12) and (13) and by two boundary
conditions (14) and k(0).

- About stability

- an unstable system: no convergence
- a globally stable system: multiple equilibria
- The saddle-path stability: a unique equilibrium

"



- Saddle path stability in linear systems (informally): For a
linear n-dimensional system the number of negative
eigenvalues, m, tells that there exists an m-dimensional
subspace such that starting from any x(0) in this
subspace, we have a unique solution with x(t) — x*. (See
Acemoglu ch 7.8 theorem 718)

- The takeaway message: Compare the number of negative
eigenvalues, m, to the number of predetermined state
variables. If m = number of state variables, we have a
unigue solution.

- For non-linear systems, we can linearize around the
steady state and explore its local stability by applying the
same idea( see theorem 719 in Acemoglu’s book).



- Let's approximate (13) (12) by a first order Taylor expansion
around (R*, c*)

k ~ constant + (f (k*) — n — 6)(k — k*) — (c — ¢*)

cf' (k") "
ey k=)

- To find the two eigenvalues (note that f'(k*) — 6 = p)

p—n—X\ -1
C*f//(k*) O . A = O

eu(c*)

C ~ constant +

- Since ¢ f((k)) < 0 there are two eigenvalues, one below
zero and one above = one dimensional curve, the stable
arm, converging to the steady state.

- Note that we have one predetermined variable,k.
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- For 2-dimensional systems there is @ more intuitive way to
establish uniqueness, by using a graph called phase
diagram.

- How to draw a phase diagram:

* Draw the isoclines, points on (k(t), c(t)) space for which
c(t)y=0ork(t) =0.

- Then, determine how both variables evolve separately in
each part of the space (determine the direction of the
motion from the difference equation for both variables).

- To "prove” the uniqueness, rule out all other paths except,
for the stable arm.

- One can also use phase diagrams to analyze transitional
dynamics.
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- The stable arm is shown in the figure. For any initial level
of capital, consumption jumps to the unique stable path

that leads to the steady state (k*, c*) (the intersection of
the two isoclines)

- After the initial jump, both capital and consumption
evolve smoothly according to (12) and (13).

- Uniqueness: All points away from the stable arm will

eventually lead to either zero consumption or zero capital.



- If the initial level of consumption was below the stable
arm

- the consumption would reach zero in finite time and
capital would accumulate continuously until the maximum
level of capital, k would be reached (with zero
consumption).

© As R > Rgoig and for rgeiq = f/(Rgola) — 8 < n. This path will
violate the transversality condition.

- If ¢(0) were above the stable arm, in this case
- capital stock would reach zero in finite time, while
household consumption would remain positive.
- This violates feasibility (k cannot be negative and it is
never optimal to have a planned jump in consumption)



Technological change and some
policy ISSUES (ref: Acemoglu ch 8.7-8.9)




Technological change

- Without exogenous technological change the neoclassical
model will converge to a steady state
- Assume that
Y(t) = F(K(t), A(t)L(1)), (18)
where
A(t) = A(0)ed".
- As with the Solow model, we want to redefine variables so
that for the new ones we have a well defined steady state.

- Let's define
con V() K(t B
0 = o = Mg D =kO), 09
where
k(1) = ) (20)



- In addition to technology, we also need to impose a
further assumption on preferences to ensure the
balanced growth.

- We need consumption to grow at a constant rate.

- The Euler equation implies that

(t) ! B

if r(t) — r*, then ¢(t)/c(t) — g is possible only if
eu(*) — ey

- That is, the elasticity of marginal utility of consumption

has to be asymptotically constant (CRRA-preferences).



- HH's problem is to maximize

/OOO exp (—(p — n)t)%dt, (22)

where c(t) = C(t)/L(t), subject to the flow budget
constraint and no-Ponzi condition (eq (14) and (15) in
lecture 7)

- As before, the Euler equation takes the familiar form

ct) 1

N _ 2
o0 = g0 -0 (23)
- However, due to technological progress, output per capita
grows and so also c(t) grows.

- Let's define
)= o = A (24)
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- This normalized consumption will stay constant along the
BGP

1
= 2(r()) = p - 69)
- Moreover, the accumulation of capital is given by
R(t) = fik(t) = €(t) — (n + g + O)R(D), (25)

where recall that R(t) = K(t)/(A(t)L(t))

- Finally, the transversality condition can be expressed as

t
tlim [I?(t) exp (—/ [f (R(S)) —g — 6 — n]ds>] =0. (26)
— 00 0
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- The equilibrium interest rate is still given by
r(t) = f(k(t)) - 6.
- Since in steady state (BGP) ¢(t) must remain constant,
r=p+ 6g, which implies that
f(k*) = p+ 6+ 6g. (27)

- This equation determines the steady-state value of the
effective capita-labor ratio k*.
- The level of normalized consumption is given eq (25)

& =f(R*) — (n + g + O)R", (28)

while per capita consumption grows at rate g.
- However, there is one additional complication. Now the
transversality condition is more demanding

tl_|>r(r>1c> [I?(t) exp <— /Ot[p - (1-6)g - n]ds)] =0. (29)
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- That is, we need to assume that p — n > (1 — 6)g for the
transversality condition to hold.

- This ensures that households do not achieve infinite
utility.

- The steady state effective capital-labor ration is
determined endogenously.

- The steady state growth rate is given exogenously and is
equal to the rate of labor-augmenting technological
progress, g.
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The role of policy

- Let's extend the previous framework by introducing linear
tax policy.

- Suppose that returns on capital net of depreciation are
taxed at rate 7 and proceeds are redistributed lumpsum
back to households.

- In this case, the capital accumulation is still given by (25),
but the net interest rate faced by HH changes to

r(t) = (1= 7)(F(R(t)) — 9) (30)
- The growth rate of normalized consumption is then
obtained from the Euler equation (23) as

20 = 50 9~ 09)

= 2~ D) - 5) ~ p— b) .



- The steady state capital to effective labor ratio is given by

p+06g

flr)=6+5—

(32)

- A higher tax rate increases the right hand side, and since
f(-) is decreasing, it reduces R*

- This is one channel through which the policy (and thus
institutional) differences might affect economic outcomes.
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Comparative dynamics

- How the entire equilibrium path reacts in response to a
change in policy or parameters?

- An example: the effects of a change in the tax rate of
capital.

- Suppose that population grows at rate n and
labor-augmenting technological grows at rate g and that
capital is taxed at rate 7.

- Moreover, assume that the economy is initially in steady
state (kR*, )
- Assume that the capital tax rate declines from 7 to 7/.

- How does the equilibrium path change?
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A quantitative evaluation

- Consider a world consisting of J closed neoclassical
economies.
- Suppose that each country admits a representative HH
with identical preferences given by
/OO exp (—pt)Mdt. (33)
0 1—6

- Assume that there is no population growth.
- All countries have access to same production technology

Vi(t) = Ki(D)*(AH;(8))' 7, (34)

with H; representing the exogenously given stock of
human capital.
- The accumulation equation is

K(t) = 1;(t) — 6K;(1). (35) g



- The budget constraint for the HH:
(1+ 7)1i(t) + C(t) < Y(1), (36)
where 7; is the (constant) country specific tax on

investment.

- The competitive EQM can be characterized as the solution
to maximization of (33) subject to (35) and (36).

- With the same steps as before, the Euler equation of the
representative HH is

O 1( a  [(AHO\TT
c,-(t)‘e<(1+n)<m»<t)> ’ p)' 7
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- At the steady state Cj(t)/Cj(t) = 0 for all j. Thus the steady
state capital for country j is

:
o) T—a

K(t)= ———— AH;(t). 38

O=(aroprs) MO 6

- Countries with higher taxes on investment have a lower

capital stock in the steady state.

- Substituting (38) into (34) and comparing two countries
with different taxes but the same human capital (and
denoting the steady state income level of a country with a
tax rate equal to 7 by Y(7)), we obtain

V(r) _ (1 - T’>1“a -

T+ 7
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- We can use (39) to evaluate quantitatively the effects of
tax like distortions to income across countries.

- Can neoclassical growth model explain large income
differences across countries?

- The answer depends on differences in 7 (taxes or wedges)
across countries and the value of a.

- How to measure 77

- One approach is to use the fact that in our model the
price of investment goods relative to consumption goods
is1+7.

- In some countries the relative price of investment goods
is almost 8 times as high as in others.

31



- Assuming that a = 1/3 we get from (39) that

~ 89° ~ 3. (40)

- Thus, differences in taxes or tax-like distortions are
unlikely to explain the large income differences (in
neoclassical model!).

32



Neoclassical growth model: a summary

- Compared to the Solow model we have managed to
endogenize the saving and consumption policies.

- But we still need an exogenous technological progress to
generate growth.

- However, the neoclassical growth model paves the way for
further analysis of capital accumulation, human capital
investments and endogenous technological progress.

- It is perhaps the most influential model in
macroeconomics.

33



	An example of consumption functions (ref: Acemoglu ch 8.2)
	Optimal growth, steady state and transitional dynamics (ref: Acemoglu ch 8.3-8.5)
	Technological change and some policy issues (ref: Acemoglu ch 8.7-8.9)

