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Lecture 8:
Neoclassical growth, further topics
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An example of consumption
functions (ref: Acemoglu ch 8.2)



Consumption behaviour and the lifetime budget constraint

• In the previous lecture, we showed that the consumer’s
optimization leads (among other things) to the following
consumption Euler equation

˙c(t)
c(t) =

1
εu(c(t))

(r(t)− ρ) (1)

• This equation, however, does not by itself give us a unique
path for consumption (we need a boundary condition).

• To derive that, for a special case εu(c(t)) = θ, we need to
combine (1) with the (modified) lifetime budget constraint
(+TVC)
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• To proceed, note that the average interest rate from 0 to t
can be written as

r̄(t)) = 1
t

∫ t

0
r(s)ds (2)

• Integrating, (1) we get

c(t) = c(0) exp
(∫ t

0

r(s)− ρ

εu(c(t))
ds
)

(3)

• If εuc(t) is a constant, θ, (CRRA-utility), (3) simplifies to

c(t) = c(0) exp
(
r̄(t)− ρ

θ
t
)

(4)
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• In the previous lecture, we wrote the lifetime budget
constraint as∫ T

0
c(t)L(t) exp

(∫ T

t
r(s)ds

)
dt+A(T)

=

∫ T

0
w(t)L(t) exp

(∫ T

t
r(s)ds

)
dt+A(0) exp

(∫ T

t
r(s)ds

)
,

(5)

• We can express this in a more common way by multiplying
it by exp (−

∫ T
0 r(s)ds).∫ T

0
c(t)L(t) exp

(
−
∫ t

0
r(s)ds

)
dt+ exp

(
−
∫ T

0
r(s)ds

)
A(T)

=

∫ T

0
w(t)L(t) exp

(
−
∫ t

0
r(s)ds

)
dt+A(0),

(6)
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• Divide everything by L(0) (remember that
L(t) = L(0) exp (nt)) and use r̄(t)t =

∫ t
0 r(s)ds,∫ T

0
c(t) exp (−(̄r(t)− n)t)dt+ exp (−(̄r(T)− n)T)a(T)

=

∫ T

0
w(t) exp (−(̄r(t)− n)t)dt+ a(0),

(7)

• Taking the limit→ ∞ and using the transversality
condition,

lim
T→∞

[a(T) exp (−(̄r(T)− n)T)] = 0, (8)

gives us the following standard expression for the lifetime
budget constraint∫ ∞

0
c(t) exp (−(̄r(t)− n)t)dt = a0+

∫ ∞

0
w(t) exp (−(̄r(t)− n)t)dt

(9)
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Consumption policy

• Substituting eq (4), c(t) = c(0) exp
(
r̄(t)−ρ

θ

)
, into the

budget constraint (9) gives

c(0) =
[∫ ∞

0
exp

((
(1− θ)̄r(t)

θ
− ρ

θ
+ n
)
t
)
dt
]−1

×
[
a(0) +

∫ ∞

0
w(t) exp(−(̄r(t)− n)t

] (10)

• (10) together with the Euler equation (eq(1) with
εu(c(t)) = θ) gives the entire path of utility maximizing
consumption for the household

• The same method can be applied also to discrete time
consumption problems.
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Optimal growth, steady state and
transitional dynamics (ref: Acemoglu ch
8.3-8.5)



Optimal growth

• The planner’s problem in continuous time can be written
as

max
[k(t),c(t)]∞t=0

∫ ∞

0
exp (−(ρ− n)t)u(c(t))dt

subject to

k̇(t) = f(k(t))− (n+ δ)k(t)− c(t). (11)

and k(0)>0.
• Writing the current-value Hamiltonian and modifying the
necessary conditions will give us the following conditions

ċ(t)
c(t) =

1
εu(c(t))

(f′(k(t))− δ − ρ) (12)

k̇(t) = f(k(t))− (δ + n)k(t)− c(t) (13)

8



• Moreover, following a similar process as the one that
delivered eq(27) in lecture 7 and plugging µ(t) into the
transversality condition gives

lim
t→∞

[
k(t) exp (−

∫ t

0
(f′(k(s))− δ − n)ds)

]
= 0. (14)

• Equations (12), (13) and (14) are necessary and sufficient
conditions for the optimal growth path

• These are exactly the same conditions that describe the
market equilibrium (see equations (30), (31) and (32))

• This is not a surprise, as we already knew that the welfare
theorems hold.
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Steady state equilibrium

• Steady state requires that ċ(t) = 0 and k̇(t) = 0.
• If ċ(t) = 0 eq (12) implies

f′(k∗) = ρ+ δ (15)

which is the equivalent of the discrete-time optimal
growth model.

• Remember that we had to assume ρ > n thus,

r∗ = f′(k∗)− δ > n (16)

(Piketty’s ”r>n”-theory)
• Given k∗, the steady state consumption can be solved
from eq (13)

c∗ = f′(k∗)− (n+ δ)k∗ (17)
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Equilibrium dynamics and the saddle path stability

• In the Solow model, the transitional dynamics were given
by one differential equation and we had a globally stable
solution since for ẋ = g(x(t)) : 0 = g(x∗), g(x) > 0∀ x < x∗

and g(x) < 0∀ x > x∗.
• Here the equilibrium is determined by a system of two
differential equations (12) and (13) and by two boundary
conditions (14) and k(0).

• About stability
• an unstable system: no convergence
• a globally stable system: multiple equilibria
• The saddle-path stability: a unique equilibrium
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• Saddle path stability in linear systems (informally): For a
linear n-dimensional system the number of negative
eigenvalues, m, tells that there exists an m-dimensional
subspace such that starting from any x(0) in this
subspace, we have a unique solution with x(t) → x∗. (See
Acemoglu ch 7.8 theorem 7.18)

• The takeaway message: Compare the number of negative
eigenvalues, m, to the number of predetermined state
variables. If m = number of state variables, we have a
unique solution.

• For non-linear systems, we can linearize around the
steady state and explore its local stability by applying the
same idea( see theorem 7.19 in Acemoglu’s book).
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• Let’s approximate (13) (12) by a first order Taylor expansion
around (k∗, c∗)

k̇ ≈ constant+ (f′(k∗)− n− δ)(k− k∗)− (c− c∗)

ċ ≈ constant+ c∗f′′(k∗)
εu(c∗)

(k− k∗)

• To find the two eigenvalues (note that f′(k∗)− δ = ρ)[
ρ− n− λ −1
c∗f′′(k∗)
εu(c∗) 0− λ

]
= 0

• Since c∗f′′(k∗)
εu(c∗) < 0 there are two eigenvalues, one below

zero and one above⇒ one dimensional curve, the stable
arm, converging to the steady state.

• Note that we have one predetermined variable,k.
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Phase diagram

• For 2-dimensional systems there is a more intuitive way to
establish uniqueness, by using a graph called phase
diagram.

• How to draw a phase diagram:
• Draw the isoclines, points on (k(t), c(t)) space for which
ċ(t) = 0 or k̇(t) = 0.

• Then, determine how both variables evolve separately in
each part of the space (determine the direction of the
motion from the difference equation for both variables).

• To ”prove” the uniqueness, rule out all other paths except,
for the stable arm.

• One can also use phase diagrams to analyze transitional
dynamics.
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• The stable arm is shown in the figure. For any initial level
of capital, consumption jumps to the unique stable path
that leads to the steady state (k∗, c∗) (the intersection of
the two isoclines)

• After the initial jump, both capital and consumption
evolve smoothly according to (12) and (13).

• Uniqueness: All points away from the stable arm will
eventually lead to either zero consumption or zero capital.
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• If the initial level of consumption was below the stable
arm

• the consumption would reach zero in finite time and
capital would accumulate continuously until the maximum
level of capital, k̄, would be reached (with zero
consumption).

• As k̄ > kgold and for rgold = f′(kgold)− δ < n. This path will
violate the transversality condition.

• If c(0) were above the stable arm, in this case
• capital stock would reach zero in finite time, while
household consumption would remain positive.

• This violates feasibility (k cannot be negative and it is
never optimal to have a planned jump in consumption)
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Technological change and some
policy issues (ref: Acemoglu ch 8.7-8.9)



Technological change

• Without exogenous technological change the neoclassical
model will converge to a steady state

• Assume that
Y(t) = F(K(t),A(t)L(t)), (18)

where
A(t) = A(0)egt.

• As with the Solow model, we want to redefine variables so
that for the new ones we have a well defined steady state.

• Let’s define

ŷ(t) ≡ Y(t)
A(t)L(t) = F( K(t

A(t)L(t) , 1) ≡ f(k(t)), (19)

where
k(t) ≡ K(t)

A(t)L(t) (20)
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• In addition to technology, we also need to impose a
further assumption on preferences to ensure the
balanced growth.

• We need consumption to grow at a constant rate.
• The Euler equation implies that

ċ(t)
c(t) =

1
εu(c(t))

(r(t)− ρ), (21)

if r(t) → r∗, then ċ(t)/c(t) → gc is possible only if
εu(·) → εu

• That is, the elasticity of marginal utility of consumption
has to be asymptotically constant (CRRA-preferences).
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• HH’s problem is to maximize∫ ∞

0
exp (−(ρ− n)t)c(t)

1−θ − 1
1− θ

dt, (22)

where c(t) = C(t)/L(t), subject to the flow budget
constraint and no-Ponzi condition (eq (14) and (15) in
lecture 7)

• As before, the Euler equation takes the familiar form

ċ(t)
c(t) =

1
θ
(r(t)− ρ), (23)

• However, due to technological progress, output per capita
grows and so also c(t) grows.

• Let’s define
c̃(t) ≡ C(t)

A(t)L(t) ≡ c(t)
A(t) (24)
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• This normalized consumption will stay constant along the
BGP

˙̃c(t)
c̃(t) =

ċ(t)
c(t) − g

=
1
θ
(r(t)− ρ− θg)

• Moreover, the accumulation of capital is given by

k̇(t) = f(k(t))− c̃(t)− (n+ g+ δ)k(t), (25)

where recall that k(t) ≡ K(t)/(A(t)L(t))
• Finally, the transversality condition can be expressed as

lim
t→∞

[
k(t) exp

(
−
∫ t

0
[f′(k(s))− g− δ − n]ds

)]
= 0. (26)
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• The equilibrium interest rate is still given by
r(t) = f′(k(t))− δ.

• Since in steady state (BGP) c̃(t) must remain constant,
r = ρ+ θg, which implies that

f′(k∗) = ρ+ δ + θg. (27)

• This equation determines the steady-state value of the
effective capita-labor ratio k∗.

• The level of normalized consumption is given eq (25)

c̃∗ = f(k∗)− (n+ g+ δ)k∗, (28)

while per capita consumption grows at rate g.
• However, there is one additional complication. Now the
transversality condition is more demanding

lim
t→∞

[
k(t) exp

(
−
∫ t

0
[ρ− (1− θ)g− n]ds

)]
= 0. (29)
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• That is, we need to assume that ρ− n > (1− θ)g for the
transversality condition to hold.

• This ensures that households do not achieve infinite
utility.

• The steady state effective capital-labor ration is
determined endogenously.

• The steady state growth rate is given exogenously and is
equal to the rate of labor-augmenting technological
progress, g.

23



The role of policy

• Let’s extend the previous framework by introducing linear
tax policy.

• Suppose that returns on capital net of depreciation are
taxed at rate τ and proceeds are redistributed lumpsum
back to households.

• In this case, the capital accumulation is still given by (25),
but the net interest rate faced by HH changes to

r(t) = (1− τ)(f′(k(t))− δ) (30)

• The growth rate of normalized consumption is then
obtained from the Euler equation (23) as

˙̃c(t)
c̃(t) =

1
θ
(r(t)− ρ− θg)

=
1
θ
((1− τ)(f′(k(t))− δ)− ρ− θg)

(31)
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• The steady state capital to effective labor ratio is given by

f′(k∗) = δ +
ρ+ θg
1− τ

(32)

• A higher tax rate increases the right hand side, and since
f′(·) is decreasing, it reduces k∗

• This is one channel through which the policy (and thus
institutional) differences might affect economic outcomes.

25



Comparative dynamics

• How the entire equilibrium path reacts in response to a
change in policy or parameters?

• An example: the effects of a change in the tax rate of
capital.

• Suppose that population grows at rate n and
labor-augmenting technological grows at rate g and that
capital is taxed at rate τ .

• Moreover, assume that the economy is initially in steady
state (k∗, c̃∗)

• Assume that the capital tax rate declines from τ to τ ′.
• How does the equilibrium path change?
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A quantitative evaluation

• Consider a world consisting of J closed neoclassical
economies.

• Suppose that each country admits a representative HH
with identical preferences given by∫ ∞

0
exp (−ρt)

Cj(t)1−θ − 1
1− θ

dt. (33)

• Assume that there is no population growth.
• All countries have access to same production technology

Yj(t) = Kj(t)α(AHj(t))1−α, (34)

with Hj representing the exogenously given stock of
human capital.

• The accumulation equation is

K̇(t) = Ij(t)− δKj(t). (35) 28



• The budget constraint for the HH:

(1+ τj)Ij(t) + C(t) ≤ Y(t), (36)

where τj is the (constant) country specific tax on
investment.

• The competitive EQM can be characterized as the solution
to maximization of (33) subject to (35) and (36).

• With the same steps as before, the Euler equation of the
representative HH is

ĊJ(t)
Cj(t)

=
1
θ

(
α

(1+ τj)

(AHj(t)
Kj(t)

)1−α

− δ − ρ

)
. (37)
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• At the steady state Ċj(t)/Cj(t) = 0 for all j. Thus the steady
state capital for country j is

Kj(t) =
(

α

(1+ τj)(ρ+ δ)

) 1
1−α

AHj(t). (38)

• Countries with higher taxes on investment have a lower
capital stock in the steady state.

• Substituting (38) into (34) and comparing two countries
with different taxes but the same human capital (and
denoting the steady state income level of a country with a
tax rate equal to τ by Y(τ)), we obtain

Y(τ)
Y(τ ′) =

(
1+ τ ′

1+ τ

) α
1−α

(39)
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• We can use (39) to evaluate quantitatively the effects of
tax like distortions to income across countries.

• Can neoclassical growth model explain large income
differences across countries?

• The answer depends on differences in τ (taxes or wedges)
across countries and the value of α.

• How to measure τ?
• One approach is to use the fact that in our model the
price of investment goods relative to consumption goods
is 1+ τ .

• In some countries the relative price of investment goods
is almost 8 times as high as in others.
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• Assuming that α = 1/3 we get from (39) that

Y(τ)
Y(τ ′) ≈ 80.5 ≈ 3. (40)

• Thus, differences in taxes or tax-like distortions are
unlikely to explain the large income differences (in
neoclassical model!).
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Neoclassical growth model: a summary

• Compared to the Solow model we have managed to
endogenize the saving and consumption policies.

• But we still need an exogenous technological progress to
generate growth.

• However, the neoclassical growth model paves the way for
further analysis of capital accumulation, human capital
investments and endogenous technological progress.

• It is perhaps the most influential model in
macroeconomics.
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