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Lecture 4:
Dynamic programming



Infinite-horizon optimization and
dynamic programming (ref: Acemoglu, ch 1

and Adda and Cooper, ch2)



- Let's start with the finite-time Ramsey problem that we
analyzed in the previous lecture

.
t
max u(C
{C07K1,~..,KT+1}t_ZOﬁ ( t)
Ct + Keyr = f(Kt)
Kit1 >0

, where f(K) = F(K) + (1 — §)K
- Instead of writing the Lagrangian, we can solve this
recursively.
- As we know, at period T it is optimal to consume
everything.
- Let's note the value associated with this policy as

Vr(Kt) = u(f(Kr))-



- Using this, we can write the planner’s problem at period
T—1as

VT,1(KT,1) = chgx U(f(KT,1) — KT) + QVT(KT).

- We can continue this up to t=0.
- Thus, for period t, the planner’s problem would look like

Ve(Ke) = max u(f(Ke) — Ke) + BVesn (Ker)- (1)

t+1

- For each period, we can think of the problem as a
two-period one where everything that relates to the future
iIs embedded in Vii4

- The variable K; is called a state variable, it tells us
everything we need to know to make an optimal decision
attime t.



Infinite-horizon

- As we see later, it is also possible to write the
infinite-horizon problem in the form

V(K) = ngxu(f(K) — K') + BV(K'), (2)

where ' denotes the next period variables.

- The basic idea of dynamic programming is to turn a
problem of finding an infinite sequence into a functional
equation.

- That is, our goal is to try to find function V.

- Let's start with a bit of general theory about these
problems.



- A typical sequence problem in the state-control form:

= max Zﬂu Xt, Vi)

Wi §
st
vt € G(xt)
X1 = )Nc(xt,yt), Xo given
- Where

B € (0,1)
X; € X C R statevariables
yvieYC RN controlvariables
U:XxY—=R instantaneous payoff function
G:X=Y givesthe values ofcontrol allowed given the state

f:iXxY—=X transition equation .



The sequence problem: state only formulation

- It is often convenient to substitute y; as a function of x;
and x¢11. The state-only formulation:

o0

V(xo) = max > Bu(x,Xer1)
{XIM}SO t=0

Stxe+1 € G(Xt), Xo gliven,

whereV: X -, RG: X=Yandu:Xx X — R.

- Note that the problem is stationary (u and G do not
depend on time).

- Now, the control vector is Xy1.



- Assume that a sequence {x;}22, is the solution to the
sequential problem stated in the previous slide

- Define the set of feasible sequences (or plans), starting
with an initial value x; as

D(Xt) = {{Xs}2; : Xs4+1 € G(Xs) fors=tt+1,..}
J.e., ®(x;) is the set of feasible choices of vectors starting
from xt.

- Denote an element of ®(xg) by X = (X0, X1, ...) € ®(Xo).

-+ A1: Assume G(x) is non-empty for all x € X; and for all

Xp € Xand x € ®(xp), limp_00 Z?:o Btu(xe, Xe11) exists and
is finite.



Principle of optimality

- Given the assumptions in the previous slide and
X* € ®(x(0)), then

(0.0 (0.]
V(xo) = ZﬁtU(X?vxaﬁ = U(Xo,x7) + 525tU(X?+17X?+2)
t=0 t=0
= U(xo0,X7) + BV(X7)

- Whatever the initial state and decisions are, the remaining
decisions must constitute an optimal policy with regard to
the state resulting from the first decisions.

- As everything is time-independent, this generalises to

V(xt) = u(Xt, Xtq) + BY(XE4a) (3)
fort=0,1,..., with x*(0) = x(0)
- Moreover, if any x* € ®(xg) satisfies (3), then it attains the
optimal value in the sequence problem. 9



Bellman equation

- We can convert the sequence problem into a recursive
formulation of solving (Bellman equation):

V(x) = max u(x,x)+ BV(x')  forallxe X,  (4)
x'€G(x)

where x' denotes the next period state.

- Instead of an infinite-time problem, we have a two period
problem.

- (&) is recursive as (unknown) V is on both sides (functional
equation).
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- Solution to (4) is a time-invariant policy function
(correspondence?) from current state x into the future
state X.

V(x) = u(x,m(x)) + BV(m(x))  forallx € X. (5)

- The benefits of recursive formulation

- better intuition

- analytical solutions in some special cases
- easier to solve numerically

- powerful tools to establish its properties

"



Additional stationary dynamic programming theorems

- Let's make the following assumptions
+ A2
- Xis a compact subset of R¥
- G is non-empty valued, compact-valued and continuous
- U : X — Ris continuous, where
Xo ={(x,y) e XxX:yeGX)}.

- A3: u is strictly concave and constraint set G is convex.

- A4 For eachy € X, u(-,y) is strictly increasing in state and
G is monotone in the sense that x < x’ implies g(x) C g(x’).

- A5: u is continuously differentiable on the interior of its
domain Xg
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- When A1 and A2 hold, then there exists a unique
continuous and bounded function V: X — R that satisfy
(4). Moreover, for any xo € X an optimal plan x* € ®(xo)
exists.

- If A1, A2 and A3 hold, then the unique V is strictly concave
and there exists a unique optimal plan x* € ®(xq) for all
Xo € X. This can be expressed as xi,; = m(x{), where

m: X — Xis a continuous policy function.

- If A1, A2 and A4, then V is strictly increasing in all of its
arguments.

- If A1, A2, A3 and A5 hold and we assume that x € IntX and

7(X) € IntG(x), then V(-) is differentiable at x, with
gradient given by DV(x) = Dyu(x, 7 (x)).
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- A map is like a function, but over functions rather than

numbers.
- The RHS of the Bellman equation can be written as a map
in functions
T(W)(x) = max u(x,X') + BW(X") ¥x € X

x'€G(x)

T takes a ("value”) function and maps it into another
("value”) function.

- Any V(x) such that V(x) = TV(x) for all x solves the Bellman
equation.

- Moreover, it is a fixed-point, i.e., Tf(x) = f(x)

- We will be talking about on-to maps, that take a certain
function space into the same space
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- Next, we go through an intuitive sketch for existence and
unigueness

- If we can prove that T is a contraction, we can use the
contraction mapping theorem.
- It implies that

1. there is an unique fixed point such that V(x)=TV(x)
2. this fixed point can be reached by an iteration process
starting from an arbitrary initial condition.
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Detour: some math preliminaries

- We need to define the size of each function, i.e. we need a
norm. Norm || - [ ) || fl|=0and || fl|=0ifff=0 2)
lafl=lallifll N +2A<I I+ 172

- In our case, we can use sup-norm || f(x) |lco= Supxex | f(X) |
which implies the following metric

dos(f, 9) = sup | f(x) — g(x) |

xeX

- The space (C(Xg)p, o) IS @ complete metric space.

- Recall: Euclidian space is complete iff any Cauchy
sequence converges to an element of the space. Same
here: for any e > 0 3N.: doo(Vn(X) — V(X)) < e for
n,m > N. = there is v € C(Xg)p such that vy(x) — v(x).



Contraction maps

- Contraction map: An on-to map T is a contraction map iff
there exists a number 5 € [0,1) such that

| THh=THRISBIfi—Ff2|

- In English: T contracts the space between two functions,
i.e,, functions Tf; and Tf, are closer to each other than f;
and f5.



Contraction maps (2)

- Why is this useful?
- Think about a sequence of functions f, = Tf,_1
- If Tis a contraction map, then
| fn = faa | =[l Tfa—1 = Tfa—2 ||
<B I facr—faa |l
<|| fa=1 = fn—2 |l
Functions in the sequence become closer and closer.

- If the function space is complete, the sequence converges
to

fn—=f

where f* is a member of the functions space.



Contraction mapping theorem

Theorem

If T: M — M is a contraction map and (M,d) is a complete
metric space, then T has a unique fixed point. Moreover, for
any initial guess fo, the sequence f, = Tf,_1 converges to that
fixed point.

- If we can write a Bellman equation as a fixed point
problem of a map and prove that the map is a
contraction...

- We know there is a unique solution and we can find it
starting from any initial guess by iterating.
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Blackwell’s sufficient conditions

- In general, it is hard to prove that a map is a contraction.
We can often use Blackwell's sufficient conditions for T to
be a contraction mapping

1. Monotonicity: f1(x) < fo(x) for all x implies that
Tf(x) < Tf2(x) for all x

2. Discounting: there exists a 8 € [0, 1) such that for any
constant function c and for any function f,
T(f+c) < Tf + Bc.
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- Now we can proof that the RHS of the Bellman equation

T(W)(x) = X@g);)u(x X') + BW(X') Vx € X

is a contraction.

- Monotonicity: assume that W(x) > Q(x) for all x and let
pa(x) be the policy function obtained from

max u(x,X') + BQ(x) Vx € X
x'€G(x)

Then

T(W)(x) = maxu(x, x') + BW(X) = u(x, pa(x)) + BW(pq(x)) =

x'eG(x)

u(x, pa(x)) + AQ(pa(x)) = T(Q)(s) vx € X

21



- Discounting:
T(W+R) = max u(x,xX') + B(W(X') + R) = T(W) 4+ BRVx € X.

x'€G(x)

- As 0 < 8 < 1, T operator is a contraction map.

- and based on the contraction mapping theorem there
exists a unique solution to (4).
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Numerical DP and contractions

- Make an initial guess for value function Vy(x) for all x, e.g,
Vo(x) =0
- Update the guess using T. That is V4(x) = TVy(x)

- Compare the distance between V4 and V. If
doo(Vo, V1) =~ 0, stop.

- Otherwise update, V, = TV; and compare V, and V;.
- Continue iterating until deo(TVt, Vt) = 0.

23



The first order conditions

- Consider the functional equation

V(xt) = max u(Xe,Xer1) + BV(Xes), (6)

Xt+1€G(Xt)
- Let's assume that assumptions A1 — A5 hold.
- Thus, (6) is strictly concave and the maximand is
differentiable.
- The optimal solutions can be characterized by the
following Euler equation

Dxeor U(Xe, Xe1™) + BDV(Xt,4) = 0, (7)
where Dy, is a vector of partial derivatives wrt the control
vector.

- Or denoting control vector with y
Dyu(xt,y") + BOV(y*) = 0 (8)

2%



"Envelope theorem”

- But we do not know V/(-)?
- Notation: xi,; = y* = m(x) and Dy is the partial derivative
vector wrt controls while Dy is the partial derivative vector

wrt states.
V(xe) = max u(Xe,Xe1) + BV(Xe1),
Xt+1€G(Xt)
V(xt) = uxe, m(xt)) + BV(m(xt))
DV(x) = Dyu(xt,m(xt)) + Dyu(xe, m(xt))

«Dym(Xt) + BDV(m(Xt)) * Dy (X¢)
= Dyu(xt, 7(Xt)) + [Dyu(xe, m(Xt)) + BDV(m(xt)] Dx(Xt)
=0see eq(8)
- This holds also for the next period, thus

BDV(xt, 1) = BDxu(w(X), w(mw(x)) 9)
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- Pluging (9) into (8) gives
Dyu(x, 7(x)) + ADU(r(X), 7(x(x)) =0 (10)
or
Dyu(X¢, Xt4q) + BDxU(Xi415 Xi4a) = 0O (11)

- (11) is the familiar euler equation. Eq (10) states that this
can also be written as a functional equation of an
unknown policy function.

- To fully characterize the optimum we also need the
transversality condition

lim B'Dxu(XE, X 4)X; =0 (12)
t—oo
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An example: Ramsey model

- Consider the following problem

o0

maXx u(c
/?M,QZ; ()

subject to
Ry + e = f(Re)

- The Bellman equation (in the state only form)

V(Rt) = max u(f(Rt) — Rey1) + BV(Ret1) (13)

Rty
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- The first order condition
—U'(f(Re) — Ripa) + BV'(RE) =
- Use the envelope condition,
V/(RE) = U'(f(RE) — REL)F (RE),
to write the FOC as

u'(f(ke) — Ripq) = pu’ (f(RE) — I??+2)]d(l??+1)
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Log-preferences and Cobb-Douglas technology

- Let’'s continue with the previous example and let's assume
that u(c) = Inc and f(kR) = R~
- Equation (16) can be written as
1 _5 am(R)*
ke —m(R) " (k) —m(n(k))
This has to hold for all k.

- Guess that this functional equation can be solved with a
policy function that takes the following form

(17)

m(R) = ak®. (18)
and plug it into (17)
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- Thus,

1 aq®pe(a=1)

ke —ake ~ " gage? — gitage?
(0%

ke — ake

Ol @

- a = Ba satisfies this equation.

- No need to worry about the transversality condition as k
converges to a steady state.
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