Advanced Macroeconomics 1

Oskari Vähämaa (University of Helsinki)

September 17, 2019

Lecture 4: Dynamic programming

Infinite-horizon optimization and dynamic programming (ref: Acemoglu, ch 1 and Adda and Cooper, ch2)

• Let's start with the finite-time Ramsey problem that we analyzed in the previous lecture

$$\max_{\{C_0, K_1, ..., K_{T+1}\}} \sum_{t=0}^{T} \beta^t u(C_t)$$
$$C_t + K_{t+1} = f(K_t)$$
$$K_{t+1} \ge 0$$

, where $f(K) \equiv F(K) + (1 - \delta)K$

- Instead of writing the Lagrangian, we can solve this recursively.
- As we know, at period T it is optimal to consume everything.
- Let's note the value associated with this policy as $V_T(K_t) = u(f(K_T)).$

• Using this, we can write the planner's problem at period T-1 as

$$V_{T-1}(K_{T-1}) = \max_{K_T} u(f(K_{T-1}) - K_T) + \beta V_T(K_T).$$

- We can continue this up to t=0.
- \cdot Thus, for period t, the planner's problem would look like

$$V_t(K_t) = \max_{K_{t+1}} u(f(K_t) - K_{t+1}) + \beta V_{t+1}(K_{t+1}).$$
(1)

- For each period, we can think of the problem as a two-period one where everything that relates to the future is embedded in V_{t+1}
- The variable *K_t* is called a state variable, it tells us everything we need to know to make an optimal decision at time t.

• As we see later, it is also possible to write the infinite-horizon problem in the form

$$V(K) = \max_{K'} u(f(K) - K') + \beta V(K'), \qquad (2)$$

where ' denotes the next period variables.

- The basic idea of dynamic programming is to turn a problem of finding an infinite sequence into a functional equation.
- That is, our goal is to try to find function V.
- Let's start with a bit of general theory about these problems.

• A typical sequence problem in the state-control form:

$$V(x) = \max_{\{y_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta u(x_t, y_t)$$

st

$$y_t \in \tilde{G}(x_t)$$

 $x_{t+1} = \tilde{f}(x_t, y_t), x_0 \text{ given}$

Where

 $\beta \in (0,1)$ $x_t \in X \subset \mathbb{R}^{K_x}$ state variables $v_t \in Y \subset \mathbb{R}^{K_y}$ control variables $u: X \times Y \rightarrow \mathbb{R}$ instantaneous payoff function $\tilde{G}: X \Longrightarrow Y$ gives the values of control allowed given the state $f: X \times Y \rightarrow X$ transition equation 6

The sequence problem: state only formulation

• It is often convenient to substitute y_t as a function of x_t and x_{t+1} . The state-only formulation:

$$V(x_0) = \max_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta u(x_t, x_{t+1})$$

$$st x_{t+1} \in G(x_t), x_0 given,$$

where $V: X \rightarrow \mathbb{R}$ $G: X \rightrightarrows Y$ and $u: X \times X \rightarrow \mathbb{R}$.

- Note that the problem is stationary (u and G do not depend on time).
- Now, the control vector is x_{t+1} .

- Assume that a sequence $\{x_t^*\}_{t=0}^\infty$ is the solution to the sequential problem stated in the previous slide
- Define the set of feasible sequences (or plans), starting with an initial value *x*_t as

$$\Phi(x_t) = \{\{x_s\}_{s=t}^{\infty} : x_{s+1} \in G(x_s) \quad for \, s = t, t+1, ...\}$$

,i.e., $\Phi(x_t)$ is the set of feasible choices of vectors starting from x_t .

- Denote an element of $\Phi(x_0)$ by $\mathbf{x} = (x_0, x_1, ...) \in \Phi(x_0)$.
- A1: Assume G(x) is non-empty for all $x \in X$; and for all $x_0 \in X$ and $\mathbf{x} \in \Phi(x_0)$, $\lim_{n\to\infty} \sum_{t=0}^n \beta^t u(x_t, x_{t+1})$ exists and is finite.

Principle of optimality

• Given the assumptions in the previous slide and $\mathbf{x}^* \in \Phi(x(0))$, then

$$V(x_0) = \sum_{t=0}^{\infty} \beta^t u(x_t^*, x_{t+1}^*) = u(x_0, x_1^*) + \beta \sum_{t=0}^{\infty} \beta^t u(x_{t+1}^*, x_{t+2}^*)$$

= $u(x_0, x_1^*) + \beta V(x_1^*)$

- Whatever the initial state and decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decisions.
- As everything is time-independent, this generalises to

$$V(x_t^*) = u(x_t^*, x_{t+1}^*) + \beta V(x_{t+1}^*)$$
(3)

for t = 0, 1, ..., with $x^*(0) = x(0)$

• Moreover, if any $\mathbf{x}^* \in \Phi(x_0)$ satisfies (3), then it attains the optimal value in the sequence problem.

• We can convert the sequence problem into a recursive formulation of solving (Bellman equation):

$$V(x) = \max_{x' \in G(x)} u(x, x') + \beta V(x') \quad \text{for all } x \in X, \quad (4)$$

where x' denotes the next period state.

- Instead of an infinite-time problem, we have a two period problem.
- (4) is recursive as (unknown) V is on both sides (functional equation).

• Solution to (4) is a time-invariant policy function (correspondence?) from current state x into the future state x'.

$$V(x) = u(x, \pi(x)) + \beta V(\pi(x)) \quad \text{for all } x \in X.$$
 (5)

- The benefits of recursive formulation
 - \cdot better intuition
 - analytical solutions in some special cases
 - easier to solve numerically
 - powerful tools to establish its properties

Additional stationary dynamic programming theorems

- Let's make the following assumptions
- A2:
 - X is a compact subset of \mathbb{R}^{K}
 - $\cdot\,$ G is non-empty valued, compact-valued and continuous
 - $u : \mathbf{X}_G \to \mathbb{R}$ is continuous, where $\mathbf{X}_G = \{(x, y) \in X \times X : y \in G(x)\}.$
- A3: u is strictly concave and constraint set G is convex.
- A4: For each $y \in X$, $u(\cdot, y)$ is strictly increasing in state and G is monotone in the sense that $x \le x'$ implies $g(x) \subset g(x')$.
- A5: u is continuously differentiable on the interior of its domain $X_{\mbox{\scriptsize G}}$

- When A1 and A2 hold, then there exists a unique continuous and bounded function V : X → ℝ that satisfy (4). Moreover, for any x₀ ∈ X an optimal plan x* ∈ Φ(x₀) exists.
- If A1, A2 and A3 hold, then the unique V is strictly concave and there exists a unique optimal plan $\mathbf{x}^* \in \Phi(x_0)$ for all $x_0 \in X$. This can be expressed as $x_{t+1}^* = \pi(x_t^*)$, where $\pi : X \to X$ is a continuous policy function.
- If A1, A2 and A4, then V is strictly increasing in all of its arguments.
- If A1, A2, A3 and A5 hold and we assume that $x \in IntX$ and $\pi(x) \in Int G(x)$, then $V(\cdot)$ is differentiable at x, with gradient given by $DV(x) = D_x u(x, \pi(x))$.

T operator

- A map is like a function, but over functions rather than numbers.
- The RHS of the Bellman equation can be written as a map in functions

$$T(W)(x) = \max_{x' \in G(x)} u(x, x') + \beta W(x') \,\forall x \in X$$

T takes a ("value") function and maps it into another ("value") function.

- Any V(x) such that V(x) = TV(x) for all x solves the Bellman equation.
- Moreover, it is a fixed-point, i.e., Tf(x) = f(x)
- We will be talking about on-to maps, that take a certain function space into the same space

- Next, we go through an intuitive sketch for existence and uniqueness
- If we can prove that T is a contraction, we can use the contraction mapping theorem.
- It implies that
 - 1. there is an unique fixed point such that V(x)=TV(x)
 - 2. this fixed point can be reached by an iteration process starting from an arbitrary initial condition.

Detour: some math preliminaries

- We need to define the size of each function, i.e. we need a norm. Norm $\|\cdot\|$: 1) $\|f\| \ge 0$ and $\|f\| = 0$ iff f = 0 2) $\|\alpha f\| = |\alpha| \|f\|$ 3) $\|f^1 + f^2\| \le \|f^1\| + \|f^2\|$
- In our case, we can use sup-norm $|| f(x) ||_{\infty} = sup_{x \in X} | f(x) |$ which implies the following metric

$$d_{\infty}(f,g) = \sup_{x \in X} |f(x) - g(x)|$$

- The space $(C(X_G)_b, d_\infty)$ is a complete metric space.
- Recall: Euclidian space is complete iff any Cauchy sequence converges to an element of the space. Same here: for any $\varepsilon > 0 \exists N_{\varepsilon}: d_{\infty}(v_n(x) - v_m(x)) \le \varepsilon$ for $n, m \ge N_{\varepsilon} \Rightarrow$ there is $\nu \in C(X_G)_b$ such that $v_n(x) \to \nu(x)$.

• Contraction map: An on-to map T is a contraction map iff there exists a number $\beta \in [0, 1)$ such that

$$\parallel Tf_1 - Tf_2 \parallel \leq \beta \parallel f_1 - f_2 \parallel$$

• In English: T contracts the space between two functions, i.e., functions Tf_1 and Tf_2 are closer to each other than f_1 and f_2 .

Contraction maps (2)

- Why is this useful?
- Think about a sequence of functions $f_n = T f_{n-1}$
- \cdot If T is a contraction map, then

$$\| f_n - f_{n-1} \| = \| Tf_{n-1} - Tf_{n-2} \|$$

$$\leq \beta \| f_{n-1} - f_{n-2} \|$$

$$< \| f_{n-1} - f_{n-2} \|$$

Functions in the sequence become closer and closer.

• If the function space is complete, the sequence converges to

$$f_n \to f^*$$

where f^* is a member of the functions space.

Theorem

If $T : M \to M$ is a contraction map and (M,d) is a complete metric space, then T has a unique fixed point. Moreover, for any initial guess f_0 , the sequence $f_n = Tf_{n-1}$ converges to that fixed point.

- If we can write a Bellman equation as a fixed point problem of a map and prove that the map is a contraction...
- We know there is a unique solution and we can find it starting from any initial guess by iterating.

- In general, it is hard to prove that a map is a contraction. We can often use Blackwell's sufficient conditions for T to be a contraction mapping
 - 1. Monotonicity: $f_1(x) \le f_2(x)$ for all x implies that $Tf_1(x) \le Tf_2(x)$ for all x
 - 2. Discounting: there exists a $\beta \in [0, 1)$ such that for any constant function c and for any function f, $T(f + c) \leq Tf + \beta c$.

• Now we can proof that the RHS of the Bellman equation

$$T(W)(x) = \max_{x' \in G(x)} u(x, x') + \beta W(x') \,\forall x \in X$$

is a contraction.

• Monotonicity: assume that W(x) > Q(x) for all x and let $p_Q(x)$ be the policy function obtained from

$$\max_{x'\in G(x)} u(x,x') + \beta Q(x') \,\forall x \in X$$

Then

 $T(W)(x) = \max_{\substack{x' \in G(x) \\ u(x, p_Q(x)) + \beta Q(p_Q(x)) \equiv T(Q)(s) \forall x \in X}} u(x, p_Q(x)) + \beta Q(p_Q(x)) \equiv T(Q)(s) \forall x \in X$

- Discounting: $T(W + k) = \max_{x' \in G(x)} u(x, x') + \beta(W(x') + k) = T(W) + \beta k \,\forall x \in X.$
- $\cdot\,$ As 0 $<\beta<$ 1, T operator is a contraction map.
- and based on the contraction mapping theorem there exists a unique solution to (4).

- Make an initial guess for value function $V_0(x)$ for all x, e.g., $v_0(x) = 0$
- Update the guess using T. That is $V_1(x) = TV_0(x)$
- Compare the distance between V_1 and V_0 . If $d_{\infty}(V_0, V_1) \approx 0$, stop.
- Otherwise update, $V_2 = TV_1$ and compare V_2 and V_1 .
- Continue iterating until $d_{\infty}(TV_t, V_t) \approx 0$.

The first order conditions

• Consider the functional equation

$$V(x_t) = \max_{x_{t+1} \in G(x_t)} u(x_t, x_{t+1}) + \beta V(x_{t+1}),$$
(6)

- $\cdot\,$ Let's assume that assumptions A1-A5 hold.
- Thus, (6) is strictly concave and the maximand is differentiable.
- The optimal solutions can be characterized by the following Euler equation

$$D_{X_{t+1}}u(x_t, x_{t+1}^*) + \beta DV(x_{t+1}^*) = 0,$$
(7)

where $D_{X_{t+1}}$ is a vector of partial derivatives wrt the control vector.

Or denoting control vector with y

$$D_y u(x_t, y^*) + \beta DV(y^*) = 0$$
 (8)

"Envelope theorem"

٠

- But we do not know $V(\cdot)$?
- Notation: $x_{t+1}^* = y^* = \pi(x_t)$ and D_y is the partial derivative vector wrt controls while D_x is the partial derivative vector wrt states.

$$V(x_{t}) = \max_{x_{t+1} \in G(x_{t})} u(x_{t}, x_{t+1}) + \beta V(x_{t+1}),$$

$$V(x_{t}) = u(x_{t}, \pi(x_{t})) + \beta V(\pi(x_{t}))$$

$$DV(x) = D_{x}u(x_{t}, \pi(x_{t})) + D_{y}u(x_{t}, \pi(x_{t}))$$

$$*D_{x}\pi(x_{t}) + \beta DV(\pi(x_{t})) * D_{x}\pi(x_{t})$$

$$= D_{x}u(x_{t}, \pi(x_{t})) + [D_{y}u(x_{t}, \pi(x_{t})) + \beta DV(\pi(x_{t}))]$$

=0 see eq(8)

 $D_{x}\pi(X_{t})$

25

• This holds also for the next period, thus

$$\beta DV(x_{t+1}^*) = \beta D_x u(\pi(x), \pi(\pi(x)))$$
(9)

• Pluging (9) into (8) gives

$$D_{y}u(x,\pi(x)) + \beta D_{x}u(\pi(x),\pi(\pi(x))) = 0$$
(10)

or

$$D_y u(x_t^*, x_{t+1}^*) + \beta D_x u(x_{t+1}^*, x_{t+1}^*) = 0$$
(11)

- (11) is the familiar euler equation. Eq (10) states that this can also be written as a functional equation of an unknown policy function.
- To fully characterize the optimum we also need the transversality condition

$$\lim_{t \to \infty} \beta^t D_x u(x_t^*, x_{t+1}^*) x_t^* = 0$$
 (12)

An example: Ramsey model

• Consider the following problem

$$\max_{k_{t+1},c_t}\sum_{t=0}^{\infty}u(c_t)$$

subject to

$$k_{t+1}+c_t=f(k_t)$$

• The Bellman equation (in the state only form)

$$V(k_t) = \max_{k_{t+1}} u(f(k_t) - k_{t+1}) + \beta V(k_{t+1})$$
(13)

 \cdot The first order condition

$$-u'(f(k_t) - k_{t+1}^*) + \beta V'(k_{t+1}^*) = 0$$
(14)

• Use the envelope condition,

$$V'(k_{t+1}^*) = u'(f(k_{t+1}^*) - k_{t+2}^*)f'(k_{t+1}^*),$$
(15)

to write the FOC as

$$u'(f(k_t) - k_{t+1}^*) = \beta u'(f(k_{t+1}^*) - k_{t+2}^*)f'(k_{t+1}^*)$$
(16)

Log-preferences and Cobb-Douglas technology

- Let's continue with the previous example and let's assume that $u(c) = \ln c$ and $f(k) = k^{\alpha}$.
- Equation (16) can be written as

$$\frac{1}{k^{\alpha} - \pi(k)} = \beta \frac{\alpha \pi(k)^{\alpha - 1}}{\pi(k)^{\alpha} - \pi(\pi(k))}.$$
(17)

This has to hold for all k.

• Guess that this functional equation can be solved with a policy function that takes the following form

$$\pi(k) = ak^{\alpha}.$$
 (18)

and plug it into (17)

• Thus,

$$\frac{1}{k^{\alpha} - ak^{\alpha}} = \beta \frac{\alpha a^{\alpha - 1} k^{\alpha(\alpha - 1)}}{a^{\alpha} k^{\alpha^{2}} - a^{1 + \alpha} k^{\alpha^{2}}}$$
$$= \frac{\beta}{a} \frac{\alpha}{k^{\alpha} - ak^{\alpha}}$$

- $a = \beta \alpha$ satisfies this equation.
- No need to worry about the transversality condition as *k* converges to a steady state.