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Lecture 4:
Dynamic programming
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Infinite-horizon optimization and
dynamic programming (ref: Acemoglu, ch 1

and Adda and Cooper, ch2)



• Let’s start with the finite-time Ramsey problem that we
analyzed in the previous lecture

max
{C0,K1,...,KT+1}

T∑
t=0

βtu(Ct)

Ct + Kt+1 = f(Kt)

Kt+1 ≥ 0

, where f(K) ≡ F(K) + (1− δ)K
• Instead of writing the Lagrangian, we can solve this
recursively.

• As we know, at period T it is optimal to consume
everything.

• Let’s note the value associated with this policy as
VT(Kt) = u(f(KT)).
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• Using this, we can write the planner’s problem at period
T− 1 as

VT−1(KT−1) = max
KT

u(f(KT−1)− KT) + βVT(KT).

• We can continue this up to t=0.
• Thus, for period t, the planner’s problem would look like

Vt(Kt) = max
Kt+1

u(f(Kt)− Kt+1) + βVt+1(Kt+1). (1)

• For each period, we can think of the problem as a
two-period one where everything that relates to the future
is embedded in Vt+1

• The variable Kt is called a state variable, it tells us
everything we need to know to make an optimal decision
at time t.
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Infinite-horizon

• As we see later, it is also possible to write the
infinite-horizon problem in the form

V(K) = max
K′
u(f(K)− K′) + βV(K′), (2)

where ’ denotes the next period variables.
• The basic idea of dynamic programming is to turn a
problem of finding an infinite sequence into a functional
equation.

• That is, our goal is to try to find function V.
• Let’s start with a bit of general theory about these
problems.
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• A typical sequence problem in the state-control form:

V(x) = max
{yt}∞t=0

∞∑
t=0

βu(xt, yt)

st
yt ∈ G̃(xt)

xt+1 = f̃(xt, yt), x0 given
• Where

β ∈ (0, 1)
xt ∈ X ⊂ RKx state variables
yt ∈ Y ⊂ RKy control variables

u : X× Y→ R instantaneous payoff function
G̃ : X⇒ Y gives the values of control allowed given the state

f : X× Y→ X transition equation
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The sequence problem: state only formulation

• It is often convenient to substitute yt as a function of xt
and xt+1. The state-only formulation:

V(x0) = max
{xt+1}∞t=0

∞∑
t=0

βu(xt, xt+1)

st xt+1 ∈ G(xt), x0 given,

where V : X→,R G : X⇒ Y and u : X× X→ R.
• Note that the problem is stationary (u and G do not
depend on time).

• Now, the control vector is xt+1.
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• Assume that a sequence {x∗t }∞t=0 is the solution to the
sequential problem stated in the previous slide

• Define the set of feasible sequences (or plans), starting
with an initial value xt as

Φ(xt) = {{xs}∞s=t : xs+1 ∈ G(xs) for s = t, t+ 1, ...}

,i.e., Φ(xt) is the set of feasible choices of vectors starting
from xt.

• Denote an element of Φ(x0) by x = (x0, x1, ...) ∈ Φ(x0).
• A1: Assume G(x) is non-empty for all x ∈ X; and for all
x0 ∈ X and x ∈ Φ(x0), limn→∞

∑n
t=0 β

tu(xt, xt+1) exists and
is finite.
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Principle of optimality

• Given the assumptions in the previous slide and
x∗ ∈ Φ(x(0)), then

V(x0) =
∞∑
t=0

βtu(x∗t , x∗t+1) = u(x0, x∗1 ) + β

∞∑
t=0

βtu(x∗t+1, x∗t+2)

= u(x0, x∗1 ) + βV(x∗1 )

• Whatever the initial state and decisions are, the remaining
decisions must constitute an optimal policy with regard to
the state resulting from the first decisions.

• As everything is time-independent, this generalises to

V(x∗t ) = u(x∗t , x∗t+1) + βV(x∗t+1) (3)

for t = 0, 1, ..., with x∗(0) = x(0)
• Moreover, if any x∗ ∈ Φ(x0) satisfies (3), then it attains the
optimal value in the sequence problem. 9



Bellman equation

• We can convert the sequence problem into a recursive
formulation of solving (Bellman equation):

V(x) = max
x′∈G(x)

u(x, x′) + βV(x′) for all x ∈ X, (4)

where x’ denotes the next period state.
• Instead of an infinite-time problem, we have a two period
problem.

• (4) is recursive as (unknown) V is on both sides (functional
equation).
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• Solution to (4) is a time-invariant policy function
(correspondence?) from current state x into the future
state x’.

V(x) = u(x, π(x)) + βV(π(x)) for all x ∈ X. (5)

• The benefits of recursive formulation
• better intuition
• analytical solutions in some special cases
• easier to solve numerically
• powerful tools to establish its properties
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Additional stationary dynamic programming theorems

• Let’s make the following assumptions
• A2:

• X is a compact subset of RK

• G is non-empty valued, compact-valued and continuous
• u : XG → R is continuous, where
XG = {(x, y) ∈ X× X : y ∈ G(x)}.

• A3: u is strictly concave and constraint set G is convex.
• A4: For each y ∈ X, u(·, y) is strictly increasing in state and
G is monotone in the sense that x ≤ x′ implies g(x) ⊂ g(x′).

• A5: u is continuously differentiable on the interior of its
domain XG
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• When A1 and A2 hold, then there exists a unique
continuous and bounded function V : X→ R that satisfy
(4). Moreover, for any x0 ∈ X an optimal plan x∗ ∈ Φ(x0)
exists.

• If A1, A2 and A3 hold, then the unique V is strictly concave
and there exists a unique optimal plan x∗ ∈ Φ(x0) for all
x0 ∈ X. This can be expressed as x∗t+1 = π(x∗t ), where
π : X→ X is a continuous policy function.

• If A1, A2 and A4, then V is strictly increasing in all of its
arguments.

• If A1, A2, A3 and A5 hold and we assume that x ∈ Int X and
π(x) ∈ Int G(x), then V(·) is differentiable at x, with
gradient given by DV(x) = Dxu(x, π(x)).
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T operator

• A map is like a function, but over functions rather than
numbers.

• The RHS of the Bellman equation can be written as a map
in functions

T(W)(x) = max
x′∈G(x)

u(x, x′) + βW(x′) ∀x ∈ X

T takes a (”value”) function and maps it into another
(”value”) function.

• Any V(x) such that V(x) = TV(x) for all x solves the Bellman
equation.

• Moreover, it is a fixed-point, i.e., Tf(x) = f(x)
• We will be talking about on-to maps, that take a certain
function space into the same space
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• Next, we go through an intuitive sketch for existence and
uniqueness

• If we can prove that T is a contraction, we can use the
contraction mapping theorem.

• It implies that
1. there is an unique fixed point such that V(x)=TV(x)
2. this fixed point can be reached by an iteration process
starting from an arbitrary initial condition.
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Detour: some math preliminaries

• We need to define the size of each function, i.e. we need a
norm. Norm ∥ · ∥: 1) ∥ f ∥≥ 0 and ∥ f ∥= 0 iff f = 0 2)
∥ αf ∥=| α |∥ f ∥ 3) ∥ f1 + f2 ∥≤∥ f1 ∥ + ∥ f2 ∥

• In our case, we can use sup-norm ∥ f(x) ∥∞= supx∈X | f(x) |
which implies the following metric

d∞(f,g) = sup
x∈X

| f(x)− g(x) |

• The space (C(XG)b,d∞) is a complete metric space.
• Recall: Euclidian space is complete iff any Cauchy
sequence converges to an element of the space. Same
here: for any ε > 0 ∃Nε: d∞(vn(x)− vm(x)) ≤ ε for
n,m ≥ Nε ⇒ there is ν ∈ C(XG)b such that vn(x) → ν(x).
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Contraction maps

• Contraction map: An on-to map T is a contraction map iff
there exists a number β ∈ [0, 1) such that

∥ Tf1 − Tf2 ∥≤ β ∥ f1 − f2 ∥

• In English: T contracts the space between two functions,
i.e., functions Tf1 and Tf2 are closer to each other than f1
and f2.
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Contraction maps (2)

• Why is this useful?
• Think about a sequence of functions fn = Tfn−1
• If T is a contraction map, then

∥ fn − fn−1 ∥ =∥ Tfn−1 − Tfn−2 ∥
≤ β ∥ fn−1 − fn−2 ∥
<∥ fn−1 − fn−2 ∥

Functions in the sequence become closer and closer.
• If the function space is complete, the sequence converges
to

fn → f∗

where f∗ is a member of the functions space.
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Contraction mapping theorem

Theorem
If T : M→ M is a contraction map and (M,d) is a complete
metric space, then T has a unique fixed point. Moreover, for
any initial guess f0, the sequence fn = Tfn−1 converges to that
fixed point.

• If we can write a Bellman equation as a fixed point
problem of a map and prove that the map is a
contraction...

• We know there is a unique solution and we can find it
starting from any initial guess by iterating.
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Blackwell’s sufficient conditions

• In general, it is hard to prove that a map is a contraction.
We can often use Blackwell’s sufficient conditions for T to
be a contraction mapping
1. Monotonicity: f1(x) ≤ f2(x) for all x implies that
Tf1(x) ≤ Tf2(x) for all x

2. Discounting: there exists a β ∈ [0, 1) such that for any
constant function c and for any function f,
T(f+ c) ≤ Tf+ βc.
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• Now we can proof that the RHS of the Bellman equation

T(W)(x) = max
x′∈G(x)

u(x, x′) + βW(x′) ∀x ∈ X

is a contraction.
• Monotonicity: assume that W(x) > Q(x) for all x and let
pQ(x) be the policy function obtained from

max
x′∈G(x)

u(x, x′) + βQ(x′) ∀x ∈ X

Then
T(W)(x) = maxu(x, x′)

x′∈G(x)
+βW(x′) ≥ u(x,pQ(x))+βW(pq(x)) ≥

u(x,pQ(x)) + βQ(pQ(x)) ≡ T(Q)(s) ∀x ∈ X
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• Discounting:
T(W+ k) = max

x′∈G(x)
u(x, x′) + β(W(x′) + k) = T(W) + βk ∀x ∈ X.

• As 0 < β < 1, T operator is a contraction map.
• and based on the contraction mapping theorem there
exists a unique solution to (4).
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Numerical DP and contractions

• Make an initial guess for value function V0(x) for all x, e.g.,
v0(x) = 0

• Update the guess using T. That is V1(x) = TV0(x)
• Compare the distance between V1 and V0. If
d∞(V0, V1) ≈ 0, stop.

• Otherwise update, V2 = TV1 and compare V2 and V1.
• Continue iterating until d∞(TVt, Vt) ≈ 0.
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The first order conditions

• Consider the functional equation

V(xt) = max
xt+1∈G(xt)

u(xt, xt+1) + βV(xt+1), (6)

• Let’s assume that assumptions A1− A5 hold.
• Thus, (6) is strictly concave and the maximand is
differentiable.

• The optimal solutions can be characterized by the
following Euler equation

Dxt+1u(xt, xt+1∗) + βDV(x∗t+1) = 0, (7)

where Dxt+1 is a vector of partial derivatives wrt the control
vector.

• Or denoting control vector with y

Dyu(xt, y∗) + βDV(y∗) = 0 (8)
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”Envelope theorem”

• But we do not know V(·)?
• Notation: x∗t+1 = y∗ = π(xt) and Dy is the partial derivative
vector wrt controls while Dx is the partial derivative vector
wrt states.

•

V(xt) = max
xt+1∈G(xt)

u(xt, xt+1) + βV(xt+1),

V(xt) = u(xt, π(xt)) + βV(π(xt))
DV(x) = Dxu(xt, π(xt)) + Dyu(xt, π(xt))

∗Dxπ(xt) + βDV(π(xt)) ∗ Dxπ(xt)
= Dxu(xt, π(xt)) + [Dyu(xt, π(xt)) + βDV(π(xt)]Dxπ(xt)︸ ︷︷ ︸

=0 see eq(8)

• This holds also for the next period, thus

βDV(x∗t+1) = βDxu(π(x), π(π(x)) (9)
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• Pluging (9) into (8) gives

Dyu(x, π(x)) + βDxu(π(x), π(π(x))) = 0 (10)

or
Dyu(x∗t , x∗t+1) + βDxu(x∗t+1, x∗t+1) = 0 (11)

• (11) is the familiar euler equation. Eq (10) states that this
can also be written as a functional equation of an
unknown policy function.

• To fully characterize the optimum we also need the
transversality condition

lim
t→∞

βtDxu(x∗t , x∗t+1)x∗t = 0 (12)
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An example: Ramsey model

• Consider the following problem

max
kt+1,ct

∞∑
t=0

u(ct)

subject to
kt+1 + ct = f(kt)

• The Bellman equation (in the state only form)

V(kt) = max
kt+1

u(f(kt)− kt+1) + βV(kt+1) (13)
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• The first order condition

−u′(f(kt)− k∗t+1) + βV′(k∗t+1) = 0 (14)

• Use the envelope condition,

V′(k∗t+1) = u′(f(k∗t+1)− k∗t+2)f′(k∗t+1), (15)

to write the FOC as

u′(f(kt)− k∗t+1) = βu′(f(k∗t+1)− k∗t+2)f′(k∗t+1) (16)
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Log-preferences and Cobb-Douglas technology

• Let’s continue with the previous example and let’s assume
that u(c) = ln c and f(k) = kα.

• Equation (16) can be written as

1
kα − π(k) = β

απ(k)α−1
π(k)α − π(π(k)) . (17)

This has to hold for all k.
• Guess that this functional equation can be solved with a
policy function that takes the following form

π(k) = akα. (18)

and plug it into (17)
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• Thus,

1
kα − akα = β

αaα−1kα(α−1)

aαkα2 − a1+αkα2

=
β

a
α

kα − akα

• a = βα satisfies this equation.
• No need to worry about the transversality condition as k
converges to a steady state.
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