# Advanced Macroeconomics 1 

Oskari Vähämaa (University of Helsinki)

September 17, 2019

Lecture 4:
Dynamic programming

# Infinite-horizon optimization and dynamic programming (ref: Acemoglu, ch 1 and Adda and Cooper, ch2) 

- Let's start with the finite-time Ramsey problem that we analyzed in the previous lecture

$$
\begin{gathered}
\max _{\left\{C_{0}, K_{1}, \ldots, K_{T+1}\right\}} \sum_{t=0}^{T} \beta^{t} u\left(C_{t}\right) \\
C_{t}+K_{t+1}=f\left(K_{t}\right) \\
K_{t+1} \geq 0
\end{gathered}
$$

, where $f(K) \equiv F(K)+(1-\delta) K$

- Instead of writing the Lagrangian, we can solve this recursively.
- As we know, at period $T$ it is optimal to consume everything.
- Let's note the value associated with this policy as $V_{T}\left(K_{t}\right)=u\left(f\left(K_{T}\right)\right)$.
- Using this, we can write the planner's problem at period T-1 as

$$
V_{T-1}\left(K_{T-1}\right)=\max _{K_{T}} u\left(f\left(K_{T-1}\right)-K_{T}\right)+\beta V_{T}\left(K_{T}\right) .
$$

- We can continue this up to $t=0$.
- Thus, for period t, the planner's problem would look like

$$
\begin{equation*}
V_{t}\left(K_{t}\right)=\max _{K_{t+1}} u\left(f\left(K_{t}\right)-K_{t+1}\right)+\beta V_{t+1}\left(K_{t+1}\right) . \tag{1}
\end{equation*}
$$

- For each period, we can think of the problem as a two-period one where everything that relates to the future is embedded in $V_{t+1}$
- The variable $K_{t}$ is called a state variable, it tells us everything we need to know to make an optimal decision at time $t$.


## Infinite-horizon

- As we see later, it is also possible to write the infinite-horizon problem in the form

$$
\begin{equation*}
V(K)=\max _{K^{\prime}} u\left(f(K)-K^{\prime}\right)+\beta \vee\left(K^{\prime}\right), \tag{2}
\end{equation*}
$$

where ' denotes the next period variables.

- The basic idea of dynamic programming is to turn a problem of finding an infinite sequence into a functional equation.
- That is, our goal is to try to find function $V$.
- Let's start with a bit of general theory about these problems.
- A typical sequence problem in the state-control form:

$$
V(x)=\max _{\left\{y_{t}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta u\left(x_{t}, y_{t}\right)
$$

st

$$
\begin{gathered}
y_{t} \in \tilde{G}\left(x_{t}\right) \\
x_{t+1}=\tilde{f}\left(x_{t}, y_{t}\right), x_{0} \text { given }
\end{gathered}
$$

- Where

$$
\begin{gathered}
\beta \in(0,1) \\
x_{t} \in X \subset \mathbb{R}^{K_{x}} \quad \text { state variables } \\
y_{t} \in Y \subset \mathbb{R}^{K_{y}} \quad \text { control variables }
\end{gathered}
$$

$$
u: X \times Y \rightarrow \mathbb{R} \quad \text { instantaneous payoff function }
$$

$\tilde{G}: X \rightrightarrows Y$ gives the values of control allowed given the state $f: X \times Y \rightarrow X \quad$ transition equation

## The sequence problem: state only formulation

- It is often convenient to substitute $y_{t}$ as a function of $x_{t}$ and $x_{t+1}$. The state-only formulation:

$$
\begin{gathered}
V\left(x_{0}\right)=\max _{\left\{x_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta u\left(x_{t}, x_{t+1}\right) \\
\text { st } x_{t+1} \in G\left(x_{t}\right), x_{0} \text { given }
\end{gathered}
$$

where $V: X \rightarrow, \mathbb{R} G: X \rightrightarrows Y$ and $u: X \times X \rightarrow \mathbb{R}$.

- Note that the problem is stationary ( $u$ and $G$ do not depend on time).
- Now, the control vector is $x_{t+1}$.
- Assume that a sequence $\left\{x_{t}^{*}\right\}_{t=0}^{\infty}$ is the solution to the sequential problem stated in the previous slide
- Define the set of feasible sequences (or plans), starting with an initial value $x_{t}$ as

$$
\Phi\left(x_{t}\right)=\left\{\left\{x_{s}\right\}_{s=t}^{\infty}: x_{s+1} \in G\left(x_{s}\right) \quad \text { for } s=t, t+1, \ldots\right\}
$$

,ie., $\Phi\left(x_{t}\right)$ is the set of feasible choices of vectors starting from $x_{t}$.

- Denote an element of $\Phi\left(x_{0}\right)$ by $\mathbf{x}=\left(x_{0}, x_{1}, \ldots\right) \in \Phi\left(x_{0}\right)$.
- A1: Assume $G(x)$ is non-empty for all $x \in X$; and for all $x_{0} \in X$ and $x \in \Phi\left(x_{0}\right), \lim _{n \rightarrow \infty} \sum_{t=0}^{n} \beta^{t} u\left(x_{t}, x_{t+1}\right)$ exists and is finite.


## Principle of optimality

- Given the assumptions in the previous slide and $x^{*} \in \Phi(x(0))$, then

$$
\begin{aligned}
V\left(x_{0}\right) & =\sum_{t=0}^{\infty} \beta^{t} u\left(x_{t}^{*}, x_{t+1}^{*}\right)=u\left(x_{0}, x_{1}^{*}\right)+\beta \sum_{t=0}^{\infty} \beta^{t} u\left(x_{t+1}^{*}, x_{t+2}^{*}\right) \\
& =u\left(x_{0}, x_{1}^{*}\right)+\beta V\left(x_{1}^{*}\right)
\end{aligned}
$$

- Whatever the initial state and decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decisions.
- As everything is time-independent, this generalises to

$$
\begin{equation*}
V\left(x_{t}^{*}\right)=u\left(x_{t}^{*}, x_{t+1}^{*}\right)+\beta V\left(x_{t+1}^{*}\right) \tag{3}
\end{equation*}
$$

for $t=0,1, \ldots$, with $x^{*}(0)=x(0)$

- Moreover, if any $\mathbf{x}^{*} \in \Phi\left(x_{0}\right)$ satisfies (3), then it attains the optimal value in the sequence problem.


## Bellman equation

- We can convert the sequence problem into a recursive formulation of solving (Bellman equation):

$$
\begin{equation*}
V(x)=\max _{x^{\prime} \in G(x)} u\left(x, x^{\prime}\right)+\beta V\left(x^{\prime}\right) \quad \text { for all } x \in X \tag{4}
\end{equation*}
$$

where $x^{\prime}$ denotes the next period state.

- Instead of an infinite-time problem, we have a two period problem.
- (4) is recursive as (unknown) $V$ is on both sides (functional equation).
- Solution to (4) is a time-invariant policy function (correspondence?) from current state $x$ into the future state x'.

$$
\begin{equation*}
V(x)=u(x, \pi(x))+\beta V(\pi(x)) \quad \text { for all } x \in X \tag{5}
\end{equation*}
$$

- The benefits of recursive formulation
- better intuition
- analytical solutions in some special cases
- easier to solve numerically
- powerful tools to establish its properties


## Additional stationary dynamic programming theorems

- Let's make the following assumptions
- A2:
- $X$ is a compact subset of $\mathbb{R}^{K}$
- $G$ is non-empty valued, compact-valued and continuous
- $u: X_{G} \rightarrow \mathbb{R}$ is continuous, where $X_{G}=\{(x, y) \in X \times X: y \in G(x)\}$.
- A3: u is strictly concave and constraint set G is convex.
- A4: For each $y \in X, u(\cdot, y)$ is strictly increasing in state and $G$ is monotone in the sense that $x \leq x^{\prime}$ implies $g(x) \subset g\left(x^{\prime}\right)$.
- A5: $u$ is continuously differentiable on the interior of its domain $X_{G}$
- When A1 and A2 hold, then there exists a unique continuous and bounded function $V: X \rightarrow \mathbb{R}$ that satisfy (4). Moreover, for any $x_{0} \in X$ an optimal plan $x^{*} \in \Phi\left(x_{0}\right)$ exists.
- If $\mathrm{A} 1, \mathrm{~A} 2$ and A 3 hold, then the unique $V$ is strictly concave and there exists a unique optimal plan $x^{*} \in \Phi\left(x_{0}\right)$ for all $x_{0} \in X$. This can be expressed as $x_{t+1}^{*}=\pi\left(x_{t}^{*}\right)$, where $\pi: X \rightarrow X$ is a continuous policy function.
- If A1, A2 and A4, then V is strictly increasing in all of its arguments.
- If A1, A2, A3 and A5 hold and we assume that $x \in \operatorname{Int} X$ and $\pi(x) \in \operatorname{Int} G(x)$, then $V(\cdot)$ is differentiable at $x$, with gradient given by $D V(x)=D_{x} u(x, \pi(x))$.


## T operator

- A map is like a function, but over functions rather than numbers.
- The RHS of the Bellman equation can be written as a map in functions

$$
T(W)(x)=\max _{x^{\prime} \in G(x)} u\left(x, x^{\prime}\right)+\beta W\left(x^{\prime}\right) \forall x \in X
$$

T takes a ("value") function and maps it into another ("value") function.

- Any $V(x)$ such that $V(x)=T V(x)$ for all $x$ solves the Bellman equation.
- Moreover, it is a fixed-point, i.e., $T f(x)=f(x)$
- We will be talking about on-to maps, that take a certain function space into the same space
- Next, we go through an intuitive sketch for existence and uniqueness
- If we can prove that T is a contraction, we can use the contraction mapping theorem.
- It implies that

1. there is an unique fixed point such that $\mathrm{V}(\mathrm{x})=\mathrm{TV}(\mathrm{x})$
2. this fixed point can be reached by an iteration process starting from an arbitrary initial condition.

## Detour: some math preliminaries

- We need to define the size of each function, i.e. we need a norm. Norm $\|\cdot\|: 1)\|f\| \geq 0$ and $\|f\|=0$ iff $f=0 \quad$ 2)

$$
\|\alpha f\|=|\alpha|\|f\| \quad \text { 3) }\left\|f^{1}+f^{2}\right\| \leq\left\|f^{1}\right\|+\left\|f^{2}\right\|
$$

- In our case, we can use sup-norm $\|f(x)\|_{\infty}=\sup _{x \in X}|f(x)|$ which implies the following metric

$$
d_{\infty}(f, g)=\sup _{x \in X}|f(x)-g(x)|
$$

- The space $\left(C\left(X_{G}\right)_{b}, d_{\infty}\right)$ is a complete metric space.
- Recall: Euclidian space is complete iff any Cauchy sequence converges to an element of the space. Same here: for any $\varepsilon>0 \exists N_{\varepsilon}: d_{\infty}\left(v_{n}(x)-v_{m}(x)\right) \leq \varepsilon$ for $n, m \geq N_{\varepsilon} \Rightarrow$ there is $\nu \in C\left(X_{G}\right)_{b}$ such that $v_{n}(x) \rightarrow \nu(x)$.


## Contraction maps

- Contraction map: An on-to map T is a contraction map iff there exists a number $\beta \in[0,1)$ such that

$$
\left\|T f_{1}-T f_{2}\right\| \leq \beta\left\|f_{1}-f_{2}\right\|
$$

- In English: T contracts the space between two functions, i.e., functions $T f_{1}$ and $T f_{2}$ are closer to each other than $f_{1}$ and $f_{2}$.


## Contraction maps (2)

-Why is this useful?

- Think about a sequence of functions $f_{n}=T f_{n-1}$
- If T is a contraction map, then

$$
\begin{aligned}
\left\|f_{n}-f_{n-1}\right\| & =\left\|T f_{n-1}-T f_{n-2}\right\| \\
& \leq \beta\left\|f_{n-1}-f_{n-2}\right\| \\
& <\left\|f_{n-1}-f_{n-2}\right\|
\end{aligned}
$$

Functions in the sequence become closer and closer.

- If the function space is complete, the sequence converges to

$$
f_{n} \rightarrow f^{*}
$$

where $f^{*}$ is a member of the functions space.

## Contraction mapping theorem

## Theorem

If $T: M \rightarrow M$ is a contraction map and $(M, d)$ is a complete metric space, then $T$ has a unique fixed point. Moreover, for any initial guess $f_{0}$, the sequence $f_{n}=T f_{n-1}$ converges to that fixed point.

- If we can write a Bellman equation as a fixed point problem of a map and prove that the map is a contraction...
- We know there is a unique solution and we can find it starting from any initial guess by iterating.


## Blackwell's sufficient conditions

- In general, it is hard to prove that a map is a contraction. We can often use Blackwell's sufficient conditions for T to be a contraction mapping

1. Monotonicity: $f_{1}(x) \leq f_{2}(x)$ for all $x$ implies that $T f_{1}(x) \leq T f_{2}(x)$ for all $x$
2. Discounting: there exists a $\beta \in[0,1)$ such that for any constant function c and for any function f , $T(f+c) \leq T f+\beta c$.

- Now we can proof that the RHS of the Bellman equation

$$
T(W)(x)=\max _{x^{\prime} \in G(x)} u\left(x, x^{\prime}\right)+\beta W\left(x^{\prime}\right) \forall x \in X
$$

is a contraction.

- Monotonicity: assume that $W(x)>Q(x)$ for all $x$ and let $p_{Q}(x)$ be the policy function obtained from

$$
\max _{x^{\prime} \in G(x)} u\left(x, x^{\prime}\right)+\beta Q\left(x^{\prime}\right) \forall x \in X
$$

Then

$$
\begin{aligned}
& T(W)(x)=\max _{x^{\prime} \in G(x)}\left(x, x^{\prime}\right)+\beta W\left(x^{\prime}\right) \geq u\left(x, p_{Q}(x)\right)+\beta W\left(p_{q}(x)\right) \geq \\
& u\left(x, p_{Q}(x)\right)+\beta Q\left(p_{Q}(x)\right) \equiv T(Q)(s) \forall x \in X
\end{aligned}
$$

- Discounting:
$T(W+k)=\max _{x^{\prime} \in G(x)} u\left(x, x^{\prime}\right)+\beta\left(W\left(x^{\prime}\right)+k\right)=T(W)+\beta k \forall x \in X$.
- As $0<\beta<1$, T operator is a contraction map.
- and based on the contraction mapping theorem there exists a unique solution to (4).


## Numerical DP and contractions

- Make an initial guess for value function $V_{0}(x)$ for all $x$, e.g., $v_{0}(x)=0$
- Update the guess using $T$. That is $V_{1}(x)=T V_{0}(x)$
- Compare the distance between $V_{1}$ and $V_{0}$. If $d_{\infty}\left(V_{0}, V_{1}\right) \approx 0$, stop.
- Otherwise update, $V_{2}=T V_{1}$ and compare $V_{2}$ and $V_{1}$.
- Continue iterating until $d_{\infty}\left(T V_{t}, V_{t}\right) \approx 0$.


## The first order conditions

- Consider the functional equation

$$
\begin{equation*}
V\left(x_{t}\right)=\max _{x_{t+1} \in G\left(x_{t}\right)} u\left(x_{t}, x_{t+1}\right)+\beta V\left(x_{t+1}\right), \tag{6}
\end{equation*}
$$

- Let's assume that assumptions A1 - A5 hold.
- Thus, (6) is strictly concave and the maximand is differentiable.
- The optimal solutions can be characterized by the following Euler equation

$$
\begin{equation*}
D_{x_{t+1}} u\left(x_{t}, x_{t+1}^{*}\right)+\beta D V\left(x_{t+1}^{*}\right)=0 \tag{7}
\end{equation*}
$$

where $D_{x_{t+1}}$ is a vector of partial derivatives wrt the control vector.

- Or denoting control vector with y

$$
\begin{equation*}
D_{y} u\left(x_{t}, y^{*}\right)+\beta D V\left(y^{*}\right)=0 \tag{8}
\end{equation*}
$$

## "Envelope theorem"

- But we do not know $V(\cdot)$ ?
- Notation: $x_{t+1}^{*}=y^{*}=\pi\left(x_{t}\right)$ and $D_{y}$ is the partial derivative vector wrt controls while $D_{x}$ is the partial derivative vector wrt states.

$$
\begin{aligned}
V\left(x_{t}\right)= & \max _{x_{t+1} \in G\left(x_{t}\right)} u\left(x_{t}, x_{t+1}\right)+\beta V\left(x_{t+1}\right), \\
V\left(x_{t}\right)= & u\left(x_{t}, \pi\left(x_{t}\right)\right)+\beta V\left(\pi\left(x_{t}\right)\right) \\
\operatorname{DV}(x)= & D_{x} u\left(x_{t}, \pi\left(x_{t}\right)\right)+D_{y} u\left(x_{t}, \pi\left(x_{t}\right)\right) \\
& * D_{x} \pi\left(x_{t}\right)+\beta D V\left(\pi\left(x_{t}\right)\right) * D_{x} \pi\left(x_{t}\right) \\
= & D_{x} u\left(x_{t}, \pi\left(x_{t}\right)\right)+\underbrace{\left[D_{y} u\left(x_{t}, \pi\left(x_{t}\right)\right)+\beta D V\left(\pi\left(x_{t}\right)\right] D_{x} \pi\left(x_{t}\right)\right.}_{=0 \text { see eq(8) }}
\end{aligned}
$$

- This holds also for the next period, thus

$$
\begin{equation*}
\beta D V\left(x_{t+1}^{*}\right)=\beta D_{x} u(\pi(x), \pi(\pi(x)) \tag{9}
\end{equation*}
$$

- Pluging (9) into (8) gives

$$
\begin{equation*}
D_{y} u(x, \pi(x))+\beta D_{x} u(\pi(x), \pi(\pi(x)))=0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
D_{y} u\left(x_{t}^{*}, x_{t+1}^{*}\right)+\beta D_{x} u\left(x_{t+1}^{*}, x_{t+1}^{*}\right)=0 \tag{11}
\end{equation*}
$$

- (11) is the familiar euler equation. Eq (10) states that this can also be written as a functional equation of an unknown policy function.
- To fully characterize the optimum we also need the transversality condition

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \beta^{t} D_{x} u\left(x_{t}^{*}, x_{t+1}^{*}\right) x_{t}^{*}=0 \tag{12}
\end{equation*}
$$

## An example: Ramsey model

- Consider the following problem

$$
\max _{k_{t+1}, c_{t}} \sum_{t=0}^{\infty} u\left(c_{t}\right)
$$

subject to

$$
k_{t+1}+c_{t}=f\left(k_{t}\right)
$$

- The Bellman equation (in the state only form)

$$
\begin{equation*}
V\left(k_{t}\right)=\max _{k_{t+1}} u\left(f\left(k_{t}\right)-k_{t+1}\right)+\beta V\left(k_{t+1}\right) \tag{13}
\end{equation*}
$$

- The first order condition

$$
\begin{equation*}
-u^{\prime}\left(f\left(k_{t}\right)-k_{t+1}^{*}\right)+\beta V^{\prime}\left(k_{t+1}^{*}\right)=0 \tag{14}
\end{equation*}
$$

- Use the envelope condition,

$$
\begin{equation*}
V^{\prime}\left(k_{t+1}^{*}\right)=u^{\prime}\left(f\left(k_{t+1}^{*}\right)-k_{t+2}^{*}\right) f^{\prime}\left(k_{t+1}^{*}\right), \tag{15}
\end{equation*}
$$

to write the FOC as

$$
\begin{equation*}
u^{\prime}\left(f\left(k_{t}\right)-k_{t+1}^{*}\right)=\beta u^{\prime}\left(f\left(k_{t+1}^{*}\right)-k_{t+2}^{*}\right) f^{\prime}\left(k_{t+1}^{*}\right) \tag{16}
\end{equation*}
$$

## Log-preferences and Cobb-Douglas technology

- Let's continue with the previous example and let's assume that $u(c)=\ln c$ and $f(k)=k^{\alpha}$.
- Equation (16) can be written as

$$
\begin{equation*}
\frac{1}{k^{\alpha}-\pi(k)}=\beta \frac{\alpha \pi(k)^{\alpha-1}}{\pi(k)^{\alpha}-\pi(\pi(k))} \tag{17}
\end{equation*}
$$

This has to hold for all $k$.

- Guess that this functional equation can be solved with a policy function that takes the following form

$$
\begin{equation*}
\pi(k)=a k^{\alpha} \tag{18}
\end{equation*}
$$

and plug it into (17)

- Thus,

$$
\begin{aligned}
\frac{1}{k^{\alpha}-a k^{\alpha}} & =\beta \frac{\alpha a^{\alpha-1} k^{\alpha(\alpha-1)}}{a^{\alpha} k^{\alpha^{2}}-a^{1+\alpha} k^{\alpha^{2}}} \\
& =\frac{\beta}{a} \frac{\alpha}{k^{\alpha}-a k^{\alpha}}
\end{aligned}
$$

- $a=\beta \alpha$ satisfies this equation.
- No need to worry about the transversality condition as $k$ converges to a steady state.

