Example: value function iteration

September 24, 2019

- Neoclassical growth model with full capital depreciation, when the felicity function is given by $u\left(c_{t}\right)=\ln c_{t}$ and the production function, in per capita terms, takes the form: $f\left(k_{t}\right)=k_{t}^{\alpha}$ where $0<\alpha<1$. Moreover, the aggregate resource constraint $f\left(k_{t}\right)=c_{t}+k_{t+1}$ has to hold for all periods
- The planner's problem can be written recursively as

$$
\begin{equation*}
V(k)=\max _{k^{\prime}} \ln \left(k^{\alpha}-k^{\prime}\right)+\beta V\left(k^{\prime}\right), \tag{1}
\end{equation*}
$$

where k^{\prime} denotes the next period capital (chosen today).

- How to solve this functional equation?
- As

$$
\begin{equation*}
T(W)(k)=\max _{k^{\prime}} \ln \left(k^{\alpha}-k^{\prime}\right)+\beta W\left(k^{\prime}\right) \tag{2}
\end{equation*}
$$

contacts towards the fixed point V for any W in the set of bound and continuous functions, we can construct a sequence by always applying T operator to get the next member in the sequence. The limit of this sequence is the (value) function that solves the (1)

- Let's guess that the value function $V^{0}=0$ for all k.
- Use T operator to get

$$
\begin{equation*}
V_{1}(k)=T\left(V^{0}\right)(k)=\max _{k^{\prime}} \ln \left(k^{\alpha}-k^{\prime}\right) \tag{3}
\end{equation*}
$$

Thus, it is optimal to set $k^{\prime}(k)=0 \forall k$ and so V^{1} can be written as

$$
\begin{equation*}
V_{1}(k)=\ln \left(k^{\alpha}\right)=\alpha \ln k \tag{4}
\end{equation*}
$$

- Use T operator again

$$
\begin{equation*}
V^{2}(k)=T\left(V^{1}\right)(k)=\max _{k^{\prime}} \ln \left(k^{\alpha}-k^{\prime}\right)+\beta \alpha \ln \left(k^{\prime}\right) \tag{5}
\end{equation*}
$$

The solution to the two period problem can be found by taking the first order condition wrt k^{\prime}

$$
\begin{align*}
& \frac{1}{k^{\alpha}-k^{\prime}(k)}=\frac{\beta \alpha}{k^{\prime}(k)} \\
& k^{\prime}(k)=\frac{\beta \alpha}{1+\beta \alpha} k^{\alpha} \tag{6}
\end{align*}
$$

and the optimal consumption (given V^{1}) is

$$
\begin{equation*}
c(k)=\frac{1}{1+\beta \alpha} k^{\alpha} . \tag{7}
\end{equation*}
$$

Thus, V_{2} written without \max is

$$
\begin{gather*}
V_{2}(k)=\ln (c(k))+\beta V^{1}\left(k^{\prime}(k)\right)=\ln \left(\frac{1}{1+\beta \alpha} k^{\alpha}\right)+\beta \alpha \ln \left(\frac{\beta \alpha}{1+\beta \alpha} k^{\alpha}\right) \\
V^{2}(k)=\alpha(1+\alpha \beta) \ln k+A_{1} \tag{8}
\end{gather*}
$$

where $A_{1} \equiv \ln \left(\frac{1}{1+\beta \alpha}\right)+\alpha \beta \ln \left(\frac{\alpha \beta}{1+\alpha \beta}\right)$

- The third round:

$$
\begin{equation*}
V^{3}(k)=T\left(V^{2}\right)(k)=\max _{k^{\prime}} \ln \left(k^{\alpha}-k^{\prime}\right)+\beta \alpha(1+\alpha \beta) \ln \left(k^{\prime}\right)+\beta A_{1} \tag{9}
\end{equation*}
$$

The first order condition with respect to k^{\prime} is given by

$$
\begin{align*}
& \frac{1}{k^{\alpha}-k^{\prime}(k)}=\frac{\beta \alpha(1+\beta \alpha)}{k^{\prime}(k)} \\
& k^{\prime}(k)=\frac{\alpha \beta+(\alpha \beta)^{2}}{1+\alpha \beta+(\alpha \beta)^{2}} k^{\alpha} \tag{10}
\end{align*}
$$

and optimal consumption is

$$
\begin{equation*}
c(k)=\frac{1}{1+\alpha \beta+(\alpha \beta)^{2}} k^{\alpha} \tag{11}
\end{equation*}
$$

Plugging the policies into eq (9) gives

$$
\begin{gather*}
V^{3}(k)=\ln \left(\frac{1}{1+\alpha \beta+(\alpha \beta)^{2}} k^{\alpha}\right)+\beta \alpha(1+\alpha \beta) \ln \left(\frac{\alpha \beta+(\alpha \beta)^{2}}{1+\alpha \beta+(\alpha \beta)^{2}} k^{\alpha}\right)+\beta A_{1} \\
V^{3}(k)=\alpha\left(1+\alpha \beta+(\alpha \beta)^{2}\right) \ln k+A_{2}, \tag{12}
\end{gather*}
$$

where $A_{2} \equiv \ln \left(\frac{1}{1+\alpha \beta+(\alpha \beta)^{2}}\right)+\left(\alpha \beta+(\alpha \beta)^{2}\right) \ln \left(\frac{\alpha \beta+(\alpha \beta)^{2}}{1+\alpha \beta+(\alpha \beta)^{2}}\right)$

- If we continue iterating up to s we have

$$
\begin{equation*}
k^{\prime}(k)=\frac{\sum_{i=1}^{s-1}(\alpha \beta)^{i}}{\sum_{i=0}^{s-1}(\alpha \beta)^{i}} k^{\alpha} . \tag{13}
\end{equation*}
$$

and so

$$
\begin{align*}
k^{\prime}(k)= & \lim _{s \rightarrow \infty} \frac{-1+1+\sum_{i=1}^{s-1}(\alpha \beta)^{i}}{\sum_{i=0}^{s-1}(\alpha \beta)^{i}} k^{\alpha} \\
= & \lim _{s \rightarrow \infty}\left(-\frac{1}{\sum_{i=0}^{s-1}(\alpha \beta)^{i}}-1\right) k^{\alpha} \\
k^{\prime}(k)= & \lim _{s \rightarrow \infty}\left(\frac{1}{\frac{1}{1-\alpha \beta}}+1\right) k^{\alpha}=\alpha \beta k^{\alpha} \tag{14}\\
& c(k)=(1-\alpha \beta) k^{\alpha} . \tag{15}
\end{align*}
$$

