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Abstract

We derive a unified and general framework for estimation and inference in a large
class of parametric models of time-varying unconditional volatility of financial re-
turn, both univariate and multivariate. A large number of well-known and widely
used specifications, for many of which asymptotic results have not been specifically
established, are contained in the class. Our framework is based on the multivariate
equation-by-equation version of the Gaussian Quasi Maximum Likelihood Estim-
ator (QMLE). An attractive property of the estimator is its ease of implementation,
since the equation-by-equation nature reduces the curse of dimensionality associ-
ated with multivariate methods, and since the exact specification of the conditional
volatility dynamics need not be known or estimated. Nevertheless, a model of con-
ditional volatility can be estimated in a second step. In particular, the (scaled)
GARCH(1,1) specification is well-defined under both correct and incorrect specific-
ation within our framework. Next, due to the assumptions we rely upon, our results
extend directly to the Multiplicative Error Model (MEM) interpretation of volatility
models. Our results can thus also be applied to other non-negative processes like
volume, duration, realised volatility, dividends, unemployment and so on. Finally,
three numerical applications illustrate our results.
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1 Introduction

Financial returns are frequently characterised by a time-varying unconditional volatility,

and it has long been known that this has important implications for statistical inference

and economic decision making. Lamoureux and Lastrapes (1990), Mikosch and Starica

(2004), and Hillebrand (2005), for example, document that ignoring changes in the un-

conditional volatility can lead to spurious persistence and long-memory effects. In turn,

the distortions induced by faulty estimates and inference, affect quantities that are key in

economic decision making. Examples include risk estimation (e.g. Andreou and Ghysels,

2008), asset allocation (e.g. Pettenuzzo and Timmermann, 2011), the equity premium

(e.g. Pastor and Stambaugh, 2001) and the shape of the option volatility smile (e.g.

Bates, 2000), to name but a few.

Let ϵt denote an observed financial return at t. If 0 < E(ϵ2t ) <∞ for all t, then ϵ2t can

be decomposes multiplicatively as

ϵ2t = gtϕ
2
t with gt := E(ϵ2t ) and ϕ2

t := ϵ2t/E(ϵ
2
t ) (1)

for all t. Henceforth, we refer to gt as the unconditional volatility at t. The decomposition

in (1) implies E(ϕ2
t ) = 1 for all t. For the implications of this, see our discussion in relation

with Assumption 4 further below. For a complete characterisation of the conditional

volatility dynamics, a model of the stochastic part ϕ2
t is required. A leading example is

the scaled version of the stationary GARCH(1,1) model of Bollerslev (1986),

ϕ2
t = htη

2
t , ηt ∼ iid(0, 1), ht = ω + αϕ2

t + βht−1, (2)

in which the conditional volatility or variance is σ2
t = gtht, and the unconditional volatility

at t is E(σ2
t ) = gt. (Henceforth, to simplify the exposition, we refer to both σt and

σ2
t as conditional volatility, since one is obtained from the other via a straightforward

transformation.) Other examples of ht include scaled versions of Stochastic Volatility

(SV) models (in which σ2
t need not equal the conditional variance), and scaled versions
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of Dynamic Conditional Score (DCS) models. Amado et al. (2019) contains a survey of

multiplicative decompositions of volatility.

Broadly, there are two approaches to the specification and estimation of time-varying

unconditional volatility gt. In the first approach, estimation of gt is nonparametric. Ex-

amples include Feng (2004), the “Lip” specification in Van Bellegem and Von Sachs (2004),

Feng and McNeil (2008), Hafner and Linton (2010), Koo and Linton (2015), Kim and Kim

(2016), and Jiang et al. (2021). In the second approach, which we follow here, gt is para-

metrised by a parameter θ. An early example is the piecewise constant specification in

Van Bellegem and Von Sachs (2004). For estimation, they proposed the sample variance

in each constant period under the assumption that break-locations are known. However,

asymptotic methods for the joint estimation and inference of multiple break-sizes were

not considered. Engle and Rangel (2008), in their specification without regressors, and

Brownlees and Gallo (2010), specify gt as a deterministic spline function. The former use

Gaussian Maximum Likelihood (ML) for estimation, whereas the latter employ penalised

ML. No asymptotic results are established in either work, but in later work Zhang et al.

(2020) derive asymptotic results for a least squares estimator of B-splines. In a series of

papers, see e.g. Amado and Teräsvirta (2013, 2014, 2017), and Silvennoinen and Teräsvirta

(2021), gt is specified as a smooth transition function, and ϕ2
t is governed by a first-order

GARCH model. In these papers the Gaussian Quasi ML Estimator (QMLE) is used to

estimate the parameter θ in the first step of an iterative estimation algorithm. However,

in the former consistency of the first step Gaussian QMLE is proved under the restrictive

and unrealistic assumption that ϕ2
t is iid, and in the latter the standardised error is as-

sumed to be iid.5 Next, Consistency and Asymptotic Normality (CAN) of the parameters

of a GARCH model that governs ϕ2
t is established in the infeasible case where θ is known

from the first step.6 Theorem 7 in Silvennoinen and Teräsvirta (2021) uses Theorem 3 in

Song et al. (2005) to establish joint CAN of all the parameters of the multivariate model,

but the proof of Theorem 7 appears to be incomplete.7 To accommodate the possibility

5See the assumption that ht = 1 for all t in Theorem 1 of (Amado and Teräsvirta, 2013, p. 145), and
Theorem 3 in Silvennoinen and Teräsvirta (2021).

6See Amado and Teräsvirta (2013, Theorem 2), and Silvennoinen and Teräsvirta (2021, Theorem 6).
7Theorem 3 in Song et al. (2005) assumes a set of unstated regularity conditions hold, and that
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of cyclical patterns in volatility, which is a common feature of intraday financial returns,

Andersen and Bollerslev (1997), and Mazur and Pipien (2012), specify (3) as a Fourier

Flexible Form (FFF). In the former estimation is by a least squares procedure (see their

Appendix B), and in the latter Bayesian methods are used. No asymptotic results are

established in either work. Escribano and Sucarrat (2018) propose a log-linear version of

gt, and use least squares methods to estimate the parameter θ. However, they do not

establish any asymptotic results. In He et al. (2019), gt is specified as a seasonal smooth

transition function, and CAN is established for a likelihood-based estimator under the as-

sumption that ϕt
iid∼ N(0, 1) (see their assumption A5 in Section 5.2). This is generalised

to the multivariate case in He et al. (in press), but ϕt is still required to be
iid∼ N(0, 1) for

all t conditional on the past (see assumption AV6 in He et al., 2023b).

In this paper, gt is parametrised by a finite dimensional parameter θ and the sample

size T . Specifically,

gt = gt,T (θ), (3)

so {gt,T : T ∈ N, 1 ≤ t ≤ T} forms a triangular array of functions from Θ to (0,∞). We

prove that the equation-by-equation Gaussian QMLE provides Consistent and Asymp-

totically Normal (CAN) estimates of θ for a large number and widely used specifications

in (3), both univariate and multivariate versions. In particular, most of the parametric

specifications of the literature reviewed above are covered by our theory, since we allow

the gt functions to change with T . A sub-class of special interest contained in (3) is

gt,T (θ) = g(θ, t/T ), g : Θ× [0, 1] → (0,∞), where time enters in the re-scaled form t/T .

Our results are characterised by several attractive properties. First, there is no need

to specify – or know – the exact specification of the stochastic component ϕ2
t in the es-

timation of θ. Also, the ϕ2
t ’s can be dependent over time. Our results thus hold for a

large class of specifications of ϕ2
t , including the most common GARCH and Stochastic

consistency of the first and second step estimators have been established, see the proof of Theorem 3
on p. 1156 in Song et al. (2005). What the unstated regularity conditions are is particularly important
in the current context due to the triangular nature of the sequence of gt,T ’s, and due to how this may
affect invertibility (i.e. the asymptotic irrelevance of the initial values of the GARCH recursion at the
true parameter value) and estimation error in the in the second step estimation of the parameters of ϕ2

t

(cf. Francq and Zaköıan, 2019, p. 190, Francq et al., 2011, and Francq et al., 2016).
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Volatility (SV) models, both univariate and multivariate. This contrasts with previous

results, which rely on specific and often restrictive assumptions on ϕ2
t . Second, while

our results do not require the estimation and explicit specification of a model of ϕ2
t , a

model can nevertheless be estimated in a second step. Our focus is on the GARCH(1,1)

model, arguably the most common conditional volatility model in empirical practice. A

particularly interesting outcome of our results is that the (scaled) GARCH(1,1) specifica-

tion is well-defined under both correct and incorrect specification within our framework,

including under certain types of non-stationarities of the stochastic component ϕ2
t . This

is very useful in practice, since it means the user is not required to know the exact DGP

of the conditional volatility dynamics, or to rely on restrictive assumptions like strict

stationarity of {ϕ2
t} or that the scaled error ϕ2

t/ht is iid. The latter is important, since

recent studies reveal that the zero-process of financial returns – both daily and intradaily

– is frequently non-stationary, see e.g. Kolokolov et al. (2020), Sucarrat and Grønneberg

(2022), Francq and Sucarrat (2023), and Stauskas and Sucarrat (2023). Sections 5.2 and

5.3 provide illustrations. A third attractive property of our estimator is its equation-by-

equation nature (cf. Francq and Zaköıan, 2016). This reduces the numerical challenges

(“the curse of dimensionality”) typically associated with multivariate models. A fourth

attractive property pertains to the challenge of modelling non-stationary periodic volat-

ility. Standard ways of describing periodicity do not readily lend themselves to tractable

re-formulations in terms of re-scaled time. By instead approaching the problem in terms

of the vector-of-seasons representation, this problem is side-stepped (Section 5.3 provides

an empirical illustration). Fifth, for parameter identification, previous theoretical results

either rely on the high-level assumption that the true parameter is the unique optimiser,

see e.g. Amado and Teräsvirta (2013, Assumption AG2 on p. 145), or on restrictive density

and iid assumptions on the scaled error ϕ2
t/ht, see e.g. He et al. (2019), He et al. (2023a),

and Silvennoinen and Teräsvirta (2021). Here, we establish milder and more primitive

sufficient conditions for important sub-classes of gt, see Section 3. This is possible due

to the nature of our estimator. Finally, another attractive property of our results, due to

the assumptions we rely on, is that the Multiplicative Error Model (MEM) interpretation
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of volatility models holds straightforwardly. The reason is that our assumptions are on ϵ2t

and ϕ2
t , not on ϵt and ϕt. Accordingly, our results also apply to models of the time-varying

unconditional mean of non-negative processes like volume, duration, realised volatility, di-

vidends, unemployment and so on by simply interpreting ϵ2t as the non-negative variable

in question.

The rest of the paper is organised as follows. The next section, Section 2, contains our

main theoretical results and the assumptions they rely on. Section 3 gives examples of

gt,T specifications contained in (3), and derive primitive sufficient conditions for a unique

optimiser for three important sub-classes of gt. Section 4 outlines how a GARCH(1,1)

specification can be used to estimate the conditional volatility dynamics in a second step.

Section 5 contains numerical illustrations of our results, whereas Section 6 concludes. The

proofs of our results are contained in the supplemental Appendix.

2 Consistency and Asymptotic Normality

2.1 Consistency

Let ϵt = (ϵ1,t, . . . , ϵM,t)
′ denote an M -dimensional multivariate return at t with M ∈ N,

and let

ϵ2m,t,T = gm,t,T (θm)ϕ
2
m,t,T , m = 1, . . . ,M, 1 ≤ t ≤ T, T ∈ N,

with θ = (θ′
1, . . . ,θ

′
M)′. Our estimator of θ is derived from the objective function

LT (θ) =
M∑

m=1

Lm,T (θm) with Lm,T (θm) =
1

T

T∑
t=1

lm,t,T (θm, ϵ
2
m,t,T ), (4)

where

lm,t,T (θm, ϵ
2
m,t,T ) = ln gm,t,T (θm) +

ϵ2m,t,T

gm,t,T (θm)
, m = 1, . . . ,M.
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Hence, minimisation of (4) leads to the Equation-by-Equation (EBE) Quasi Maximum

Likelihood Estimator (QMLE):

θ̂ = arg min
θ∈Θ

LT (θ) = (θ̂′
1, . . . , θ̂

′
M)′, θ̂m = arg min

θm∈Θm

Lm,T (θm), m = 1, . . . ,M. (5)

This is an EBE estimator, since the parameters of equation m, i.e. θm, can be estimated

separately from the parameters of the other equations.

Let θ⋆ = (θ⋆
1
′, . . . ,θ⋆

M
′)′ ∈

∏M
m=1Θm = Θ denote the true parameter value. In

establishing consistency of the EBE-QMLE, we rely on the following assumptions.

Assumption 1. Θ ⊂ Rdθ is compact.

Assumption 2. For each m = 1, . . . ,M , let Θ∗
m be an open, convex set containing Θm.

For all 1 ≤ t ≤ T , T ∈ N,

(i) gm,t,T (θm) is bounded away from zero and infinity, i.e.

0 < inf
θm∈Θ∗

m, 1≤t≤T, T∈N
gm,t,T (θm) ≤ sup

θm∈Θ∗
m, 1≤t≤T, T∈N

gm,t,T (θm) <∞.

(ii) θm 7→ gm,t,T (θm) is continuously differentiable on Θ∗
m and the derivatives ġm,t,T are

uniformly bounded:

sup
θm∈Θ∗

m, 1≤t≤T, T∈N
∥ġm,t,T (θm)∥ <∞.

Assumption 3. For each m = 1, . . . ,M , {ϵ2m,t,T : 1 ≤ t ≤ T, T ∈ N} forms a triangular

array of a.s. non-negative random variables. Let αm,T (k) be the α-mixing coefficients

corresponding to {ϵ2m,t,T : 1 ≤ t ≤ T} and suppose that as k → ∞,

sup
T∈N

αm,T (k) → 0.

Assumption 4. For each m = 1, . . . ,M , ϕ2
m,t,T := ϵ2m,t,T/gm,t,T (θ

⋆
m) is a non-degenerate

random variable such that:

(i) E(ϕ2
m,t,T ) = 1 for all 1 ≤ t ≤ T, T ∈ N;
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(ii) sup1≤t≤T, T∈NE|ϕ2
m,t,T |1+δ <∞ for some δ > 0.

Assumption 5. For eachm = 1, . . . ,M , Lm(θm) := limT→∞ T−1
∑T

t=1E
(
lm,t,T (θm, ϵ

2
m,t,T )

)
exists and attains a unique minimum at θ⋆

m ∈ Θm.

Assumption 1 is standard. Assumption 2 defines the general class of gm functions

that we consider. Section 3 gives specific examples. Assumption 3 is a mild dependence

assumption. In particular, it is substantially milder than the assumptions used by Amado

and Teräsvirta (2013) in their univariate derivations, since they rely – in our notation –

on {ϕ2
m,t,T} being iid, see their Theorem 1 on p. 145 just below equation (15). Here, by

contrast, Assumption 3 is compatible with any volatility model of ϕ2
m,t,T , stationary or not,

as long strong mixing holds. This means our results apply not only to standard models

within the ARCH, GAS and SV classes, but also to semi-strong volatility models, see

e.g. Escanciano (2009) and Francq and Thieu (2019), and to models that are only weakly

identified as models of the variance (e.g. intraday high-frequency measures of volatility),

see Sucarrat (2021b). Specific examples of GARCH and SV models that are compatible

with Assumption 3 are studied in Carrasco and Chen (2002), Lindner (2009), Davis and

Mikosch (2009), and Francq and Zaköıan (2019, Ch. 3). Note that, in the definition of

mixing size, the underlying mixing coefficients are defined across σ-fields generated by

the ϵ2m,t,T ’s and not the ϵ2t,T ’s. Since the σ-fields generated by the former are contained

in those of generated by the latter, the dependence as measured by mixing is stronger for

the latter than for the former (cf. the discussion of Assumption 9).

Assumption 4(i) is a very mild identification assumption. The reason is that almost

all volatility models are invariant to scale-transformations in the sense that there exists

a finite constant c > 0 such that the stochastic process {ϕ2∗
m,t,T} with E(ϕ2∗

m,t,T ) = µ for

all t, T satisfies E(cϕ2∗
m,t,T ) = cE(ϕ2∗

m,t,T ) = 1 for all t, T . For volatility models that are

not invariant to scale transformations in this sense, in particular those whose stability

conditions are affected by scaling (e.g. the Dynamic Conditional Score (DCS) model of

Harvey and Sucarrat (2014)), the condition E(ϕ2
m,t,T ) = 1 may be restrictive. It should

also be noted that Assumption 4(i) is compatible with {ϕ2
m,t,T} being non-stationary. A

case in point is the common situation where the zero-process of a financial return is non-
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stationary, see e.g. Sucarrat and Grønneberg (2022), and Francq and Sucarrat (2023). In

particular, Proposition 2.1(ii) in Sucarrat and Grønneberg (2022) implies E(ϕ2
m,t,T ) can

be constant over time even though the zero-process of a financial return is non-stationary.

Another implication of Assumption 4(i) is that E(ϵ2m,t,T ) = gm,t,T (θ
⋆
m). This facilitates

interpretation. Assumption 4(ii) is also a fairly mild moment assumption. For example,

it holds when {ϕ2
m,t,T} is governed by a stationary GARCH(1,1), as in (2), with finite

E(ϕ4
m,t,T ).

8 Finally, Assumption 5 is a standard regularity condition.

These assumptions are sufficient for consistency of the θ̂m estimators as defined in (5).

Theorem 1 (Consistency). Suppose Assumptions 1 – 5 hold. Then θ̂m
P→ θ⋆

m for each

m = 1, . . . ,M .

2.2 Asymptotic Normality Equation-by-Equation

We now establish asymptotic normality of θ̂m, for each m = 1, . . . ,M separately. For this

we have to strengthen the imposed conditions.

Assumption 6. θ⋆ ∈ int(Θ).

Assumption 7. For each m = 1, . . . ,M , sup1≤t≤T, T∈NE|ϕ2
m,t,T |2+δm < ∞ for some

δm > 0.

Assumption 8. For each m = 1, . . . ,M , 1 ≤ t ≤ T , T ∈ N,

(i) θm 7→ gm,t,T (θm) is twice continuously differentiable on a neighbourhood Vm of θ⋆
m

in Θm.

(ii) On Vm, define

Sm,T (θm) :=
1

T

T∑
t=1

l̇m,t,T (θm, ϵ
2
m,t,T ),

and

Âm,T (θm) :=
1

T

T∑
t=1

l̈m,t,T (θm, ϵ
2
m,t,T ),

8A finite fourth moment is needed for standard inference on the parameters, see Francq and Zaköıan
(2019). A finite fourth moment is, however, more restrictive than the usual second moment requirement
for consistency in the standard case.

9



where l̇m,t,T (θm, ϵ
2
m,t,T ) and l̈m,t,T (θm, ϵ

2
m,t,T ) are respectively the first and second de-

rivative of lm,t,T (θm, ϵ
2
m,t,T ) with respect to θm.

(iii) There are deterministic functions φm,t,T : Vm → R and random variables υm,t,T such

that,

∥l̈m,t,T (θm, ϵ
2
m,t,T )∥ ≤ φm,t,T (θm)υm,t,T , θm ∈ Vm,

where

sup
θm∈Vm

sup
1≤t≤T,T∈N

φm,t,T (θm) <∞, sup
1≤t≤T,t∈N

Eυ2m,t,T <∞.

(iv) There exist random variables ψm,t,T such that for θm,θ
′
m ∈ Vm,

∥l̈m,t,T (θm, ϵ
2
m,t,T )− l̈m,t,T (θ

′
m, ϵ

2
m,t,T )∥ ≤ ψm,t,T∥θm − θ′

m∥,

where

sup
1≤t≤T,T∈N

E |ψm,t,T | <∞.

Assumption 9. For each m = 1, . . . ,M , the strong mixing coefficients αm,T (k) satisfy

sup
T∈N

αm,T (k) = O(k−ρm−ε),

for some ε > 0, where ρm := rm/(rm − 2), rm = 2 + δm with δm > 0 as in Assumption 7.

Assumption 10. For each m = 1, . . . ,M , as T → ∞

Bm,T := Var

(
T−1/2

T∑
t=1

l̇m,t,T (θ
⋆
m, ϵ

2
m,t,T )

)
→ B⋆

m,

with B⋆
m positive definite.

Assumption 11. For each m = 1, . . . ,M , as T → ∞,

Am,T (θm) :=
1

T

T∑
t=1

E
[
l̈m,t,T (θm, ϵ

2
m,t,T )

]
→ Am(θm), θm ∈ Vm,

where Vm is as in assumption 8. A⋆
m := Am(θ

⋆
m) is positive definite.
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Assumption 6 is standard. Assumption 7 is a strengthened version of Assumption 4(ii).

Assumption 8 imposes twice continuous differentiability of each gm,t,T in a neighbourhood

of the true parameter and assumes that the second derivative satisfies (iii) a domination

condition and (iv) a Lipschitz-type condition. If the second derivative matrix of gm,t,T is

bounded on Vm, uniformly in t, T , (iii) holds (see Lemma 1). A sufficient condition for

Assumption 8 (given Assumptions 2 & 4) is that gm,t,T is three-times differentiable on Vm

with its second and third derivatives uniformly bounded (over t, T and Vm); see Lemma

7. In Assumption 9, the mixing size rm = 2 + δm is connected to the moments require-

ments in Assumption 7. The more dependence (i.e. the higher rm is), the more moments

are required. Assumptions 2, 4 and 9 are sufficient for Bm,T = O(1) (cf. Lemma 2);

Assumption 10 further ensures that Bm,T converges to a positive definite limit. Similarly

Assumptions 2, 4 and 8 suffice that each Am,T (θm) = O(1) (cf. Lemma 3); existence of

the limit is assumed in Assumption 11.

These assumptions are sufficient for marginal asymptotic normality of each θ̂m and

that Âm,T (θ̂m) is consistent for A
⋆
m.

Theorem 2. Suppose Assumptions 1 – 11 hold. Then
√
T (θ̂m−θ⋆

m)
D−→ N (0, [A⋆

m]
−1B⋆

m[A
⋆
m]

−1)

for m = 1, . . . ,M .

Corollary 1. Suppose Assumptions 1 – 11 hold. Then Âm,T (θ̂m)
P−→ A⋆

m for m =

1, . . . ,M .

2.2.1 Variance estimation

In order to operationalise inference based on the asymptotic approximation of Theorem

2, beyond Corollary 1 we require a consistent estimator of B⋆
m. We can consistently

estimate this matrix using kernel weighted sample autocovariances. The general form of

our estimator is
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B̂m,T :=
T∑

j=−T

km(j/κm,T )Γ̂m,T (j),

Γ̂m,T (j) :=
1

T

T−j∑
t=1

l̇m,t,T (θ̂m, ϵ
2
m,t,T )l̇m,t,T (θ̂m, ϵ

2
m,t+j,T )

′ (j ≥ 0),

Γ̂m,T (j) := Γ̂m,T (−j)′ (j < 0).

(6)

where the km(·)’s are kernel weights, and κm,T is the bandwidth. The permitted kernel

functions are those which belong to the class K of de Jong and Davidson (2000, p. 409),

defined as:

K :=

{
k : R → [−1, 1] : k(0) = 1, k(x) = k(−x),

∫
|k(x)| dx <∞,

∫
|ϕ(ξ)| dξ <∞,

k is continuous at 0 and at all but a finite number of points

}
,

where ϕ(ξ) := 1
2π

∫
k(x)eiξx dx.

Assumption 12 (Kernel). For each m = 1, . . . ,M , km ∈ K .

Assumption 13 (Bandwidth). κm,T → ∞ and κm,T = o(T 1/2) for each m = 1, . . . ,M .

Most kernels considered in the literature satisfy Assumption 12. This includes, amongst

other, the Bartlett, Parzen and Quadratic Spectral kernels. Assumption 13 governs the

divergence rate of the bandwidth.

The following Proposition is proven by verifying the conditions of Theorem 2.2 of

de Jong and Davidson (2000) and demonstrates that – under our Assumptions – B̂m,T is

consistent for B⋆
m.

Proposition 1. Suppose Assumptions 1 – 13 hold. Then B̂m,T
P−→ B⋆

m for m = 1, . . . ,M .
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2.3 Joint Asymptotic Normality

We next establish the joint asymptotic normality of θ̂ = (θ̂′
1, . . . , θ̂

′
M)′. Let ϵ2t,T :=

(ϵ21,t,T , . . . , ϵ
2
M,t,T )

′. We can re-write the objective function in (4) as

LT (θ) =
1

T

T∑
t=1

lt,T (θ, ϵ
2
t,T ), lt,T (θ, ϵ

2
t,T ) :=

M∑
m=1

lm,t,T (θm, ϵ
2
m,t,T ). (7)

Note that (under Assumption 2) the first and second derivatives of θ 7→ lt,T (θ, ϵ
2
t,T ) are

l̇t,T (θ, ϵ
2
t,T ) =

(
l̇1,t,T (θ1, ϵ

2
1,t,T )

′, . . . , l̇M,t,T (θM , ϵ
2
M,t,T )

′
)′
,

l̈t,T (θ, ϵ
2
t,T ) = diag

(
l̈1,t,T (θ1, ϵ

2
1,t,T ), . . . , l̈M,t,T (θM , ϵ

2
M,t,T )

)
.

Note that under Assumption 11,

AT (θ) :=
1

T

T∑
t=1

E
[
l̈t,T (θ, ϵ

2
t,T )
]
→ A(θ) := diag (A1(θ1), . . . ,AM(θM)) , θ ∈ V , (8)

where V :=
∏M

m=1 Vm and A⋆ := A(θ⋆) is positive definite. Define

ÂT (θ) := diag
(
Â1,T (θ1), . . . , ÂM,T (θM)

)
. (9)

To establish joint asymptotic normality we need to strengthen Assumptions 9 and 10

to (respectively) Assumptions 14 and 15 below.

Assumption 14. If αT (k) are the strong mixing coefficients corresponding to {ϵ2t,T : 1 ≤

t ≤ T, T ∈ N}, then

sup
T∈N

αT (k) = O(k−ρ−ε),

for some ε > 0, where ρ := r
r−2

, r := 2 + min{δ1, . . . , δM} with δm as in Assumption 7.

Assumption 15. As T → ∞

BT := Var

(
T−1/2

T∑
t=1

l̇t,T (θ
⋆, ϵ2t,T )

)
→ B⋆,
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with B⋆ positive definite.

Assumptions 2, 4 and 14 are sufficient for BT = O(1) (cf. Lemma 4); Assumption 15

further ensures that BT converges to a positive definite limit.

Theorem 3. Suppose Assumptions 1 – 8, 11, 14 and 15 hold. Then
√
T (θ̂ − θ⋆)

D−→

N (0, [A⋆]−1B⋆[A⋆]−1).

2.3.1 Variance estimation

We can consistently estimate B⋆ in the same manner as B⋆
m. Let

B̂T :=
T∑

j=−T

k(j/κT )Γ̂T (j),

Γ̂T (j) :=
1

T

T−j∑
t=1

l̇t,T (θ̂, ϵ
2
t,T )l̇t,T (θ̂, ϵ

2
t+j,T )

′ (j ≥ 0),

Γ̂T (j) := Γ̂T (−j)′ (j < 0).

(10)

where the k(·)’s are kernel weights, and κT is the bandwidth. We replace Assumptions

12 and 13 by Assumptions 16 and 17 below.

Assumption 16. k ∈ K , with K defined as in Assumption 12.

Assumption 17. κT → ∞ and κT = o(T 1/2).

Proposition 2. Suppose Assumptions 1 – 8, 11 and 14 – 17 hold. Then B̂T
P−→ B⋆.

3 Examples of gt,T

Here we provide examples of gm,t,T (θm) and establish verifiable conditions that ensure the

high-level Assumptions 5 and 8 hold.
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3.1 Smooth transition models

A variety of smooth transition models have been considered, see Amado and Teräsvirta

(2013) for a survey. Amado and Teräsvirta (2013) consider the following in more detail:

gm,t,T (θm) = δm,0 +
sm∑
l=1

δm,l

1 + exp
(
− γm,l(t/T − cm,l)

) , (11)

where θm = (δ′
m,γ

′
m, c

′
m)

′ with δm = (δm,0, δm,1, . . . , δm,sm)
′, γm = (γm,1, . . . , γm,sm)

′ and

cm = (cm,1, . . . , cm,sm)
′. For l = 1, . . . , sm, the δm,l is the total size of break l, γm,l is the

speed of transition of break l, cl is the centre of break location l and sm is the number of

breaks. There are no breaks if δm,1 = · · · = δm,sm = 0. Note that, for Assumption 5 to

hold, the δm,l’s and γm,l’s must all differ from zero. The following result ensures that the

high-level Assumptions 5 and 8 hold.

Proposition 3. Suppose gm,t,T (θm) is given by (11) with δm,1 ̸= 0, . . . , δm,sm ̸= 0, with

γm,1 ̸= 0, . . . , δm,sm ̸= 0, and with cm,0 < cm,1 < · · · < cm,sm < cm,sm+1 where cm,0 = 0

and cm,sm+1 = 1. Suppose further that Assumption 1 hold, that θ⋆
m ∈ Θm, that Θ

∗
m is an

open, bounded and convex set that contains Θm, that Assumption 4 hold, and that Vm in

Assumption 8 is contained in Θm. Then Assumptions 2 and 8 hold, and the limit Lm(θm)

in Assumption 5 exists and attains a unique minimum at θ⋆
m ∈ Θ∗

m if L̇(θ⋆
m) = 0 and

L̈(θm) is positive definite on Θ∗
m.

Proof: See Section C.2 in the appendix.

Obtaining closed form expressions of L̇ and L̈ is tedious, even when there is only one

break (sm = 1). However, numerical verification is straightforward.

3.2 Piecewise constant models

Van Bellegem and Von Sachs (2004) specify gm,t,T as piecewise constant. This amounts

to

gm,t,T (θm) = δm,0 +
sm∑
l=1

δm,lI(t/T ≥ cm,l), θm = (δm,0, δm,1, . . . , δm,sm)
′, (12)
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where I(A) is an indicator function equal to 1 if A holds and 0 otherwise. The values of

the possible break-locations cm,1, . . . , cm,s are thus known and not estimated. To estimate

θm, Van Bellegem and Von Sachs (2004) proposed the sample variance of each constant

period. This does not allow for the joint estimation and inference of multiple break-sizes.

Our results, by contrast, permit this.

In Escribano and Sucarrat (2018), gt,T is specified as a generic log-linear function.

Least Squares (LS) methods are used for estimation, but no asymptotic results are estab-

lished. The log-linear version of a piecewise constant specification is an example contained

in their class of models:

ln gm,t,T (θm) = δm,0 +
sm∑
l=1

δm,l · I(t/T ≥ cm,l), θm = (δm,0, δm,1, . . . , δm,sm)
′. (13)

Notice that (12) can always be re-written as (13). The advantage of this is that non-

negativity constraints on θm are not needed in (13). This simplifies estimation and infer-

ence under the null hypothesis that one or more of the coefficients are zero. The following

result ensures that the high-level Assumptions 5 and 8 hold.

Proposition 4. Suppose gmt,T (θm) is given by (13) with cm,0 < cm,1 < · · · < cm,sm <

cm,sm+1, where cm,0 = 0 and cm,sm+1 = 1. Suppose further that Assumption 1 hold, that

θ⋆
m ∈ Θm, that Θ

∗
m is an open, bounded and convex set that contains Θm, that Assumption

4 hold, and that Vm in Assumption 8 is contained in Θm. Then Assumptions 2 and 8

hold, and the limit Lm(θm) in Assumption 5 exists and attains a unique minimum at

θ⋆
m ∈ Θ∗

m.

Proof: See Section C.3 in the appendix.

3.3 Splines

Engle and Rangel (2008), and Brownlees and Gallo (2010), specify gm,t,T as a deterministic

spline. The former use Gaussian ML for estimation, whereas the latter employs penalised

ML. However, no asymptotic results are established in either work. Zhang et al. (2020)

derive asymptotic results for a least squares estimator of B-splines.
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Splines that are suitably expressed in terms of re-scaled time can satisfy Assumptions

2 and 8. An example is the exponential quadratic spline function considered by Engle

and Rangel (2008) (without regressors). If we remove the trend and replace nominal time

with re-scaled time, then we obtain

ln gm,t,T (θm) = δm,0 +
sm∑
l=1

δm,l(t/T − cm,l)
2I(t/T ≥ cm,l), θm = (δm,0, δm,1, . . . , δm,sm)

′,

(14)

where I(A) is an indicator function equal to 1 if A holds and 0 otherwise, and the cm,l’s are

given knot-locations that are assumed known and therefore not estimated. Commonly, to

facilitate estimation, the cm,l’s are assumed to be equidistant from each other. The value

sm is the number of knots, and δm,1, . . . , δm,sm are the knot-coefficients. Large values

of sm imply more frequent cycles, and the sharpness of each cycle is governed by the

knot-coefficients. The following result ensures that the high-level Assumptions 5 and 8

hold.

Proposition 5. Suppose gt,T (θ) is given by (14) with c0 < c1 < · · · < cs < cs+1, where

c0 = 0 and cs+1 = 1. Suppose further that Assumption 1 hold, that θ⋆
m ∈ Θm, that Θ

∗
m

is an open, bounded and convex set that contains Θm, that Assumption 4 hold, and that

Vm in Assumption 8 is contained in Θm. Then Assumptions 2 and 8 hold, and the limit

Lm(θm) in Assumption 5 exists and attains a unique minimum at θ⋆
m ∈ Θ∗

m if L̈(θm) is

positive definite on Θ∗
m.

Proof: See Section C.4 in the Appendix.

4 Estimation of conditional volatility

In empirical applications, it is often of interest to obtain estimates of the full conditional

covariance matrix E(ϵtϵ
′
t|Ft−1), where Ft−1 = σ{ϵu, u < t}. The conditional volatilities,

the σ2
m,t’s with σ

2
m,t = gm,thm,t, are on the diagonal of this matrix. In portfolio analysis,

under the unpredictability of returns assumption E(ϵt|Ft−1) = 0, the matrix must be

positive definite to ensure the conditional variance (i.e. a measure of risk) of a weighted
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portfolio of asset returns is non-negative. Here, the conditional covariance matrix can be

written as

E(ϵtϵ
′
t|Ft−1) = G

1/2
t H

1/2
t RtH

1/2
t G

1/2
t , (15)

where G
1/2
t := diag

(
g
1/2
1,t , . . . , g

1/2
M,t

)
, H

1/2
t := diag

(
h
1/2
1,t , . . . , h

1/2
M,t

)
and Rt is a conditional

correlation matrix that is either constant or time-varying. Both G
1/2
t and H

1/2
t are

positive definite if their diagonal elements are strictly positive. Note that E(ϕtϕ
′
t|Ft−1) =

H
1/2
t RtH

1/2
t . As a consequence, if Rt is also positive definite, then E(ϕtϕ

′
t|Ft−1) and

(15) are also positive definite.9

Given first step estimates of the gm,t’s, estimates of the hm,t’s can be obtained in

a second step. While, in in principle, any model can be fitted in a second step under

suitable assumptions, here we study the second step estimation of the scaled GARCH(1,1)

specfication under both correct and incorrect specification. Finally, we also outline how

Dynamic Conditional Correlations (DCCs) can be estimated in a third step while ensuring

positive definiteness of (15).

4.1 QML estimation of the scaled GARCH(1,1) model

To simplify notation we omit the subscript T in this subsection. If ϕ2
m,t := ϵ2t/gm,t(θ

⋆
m) is

governed by a scaled GARCH(1,1) model, then equation m is given by

ϕm,t =
√
hm,tηm,t, ηm,t ∼ iid(0, 1), (16)

hm,t = ω⋆
m + α⋆

mϕ
2
m,t−1 + β⋆

mhm,t−1, ω⋆
m, α

⋆
m, β

⋆
m > 0, ω⋆

m = 1− α⋆
m − β⋆

m. (17)

It is the condition ω⋆
m = (1−α⋆

m − β⋆
m) in (17) which converts the standard GARCH(1,1)

into a scaled version, i.e. E(ϕ2
m,t) = 1 for all t. Note that this condition is not restrictive

(recall the discussion of Assumption 4(i) in Section 2.1). An implication of the condition

is that only two parameters need to be estimated in the second step, namely ϑ⋆
m :=

(α⋆
m, β

⋆
m)

′.

9If two square matrices of the same size A and B are positive definite, then also ABA is positive
definite.
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In the infeasible case, {ϕ2
m,t} is observed and the consistency of the QMLE follows

trivially under suitable assumptions, see Appendix ??. In the feasible case, the second

step QMLE estimator is similar – but not identical – to the target variance estimator of

Francq et al. (2011). There, gm,t is constant (i.e. gm,t = gm for all t), and the asymptotic

variance differs from that of the Ordinary QMLE. Here, the recursive parametrisation

differs from that of the target variance estimator. Accordingly, it is not clear that the

asymptotic variance differs from that of the Ordinary QMLE. The feasible second step

QMLE of ϑ⋆
m = (α⋆

m, β
⋆
m)

′ is

ϑ̂m,T = arg min
ϑm∈Ξm

1

T

T∑
t=1

ln ĥ2m,t +
ϕ̂2
m,t

ĥm,t−1

,

where ϑm = (αm, βm)
′, ϕ̂2

m,t =
ϵ2m,t

ĝm,t
and ĥ2m,t = (1 − αm − βm) + αmϕ̂

2
m,t−1 + βmĥ

2
m,t−1.

Table 1 contains the simulation results of the Two-step QMLE. The results suggests it is

consistent, and that its asymptotic variance is the same as that of the Ordinary QMLE,

both when gm,t is constant and when it is time-varying.

When the DGP of ϕ2
m,t is not a GARCH(1,1), a scaled GARCH(1,1) specification

provides mis-specified predictions. Nevertheless, they possess several desirable properties

that are typically associated with the predictions of a correctly specified conditional ex-

pectation. First, the prediction is unbiased for volatility in the unconditional sense, just

as if it were the correct specification. To see this, suppose {ϕ2
m,t} is not governed by a

GARCH(1,1), and let

hm,t = ωm + αmϕ
2
m,t−1 + βmhm,t−1, ωm, αm, βm > 0, ωm = 1− αm − βm, (18)

denote the scaled GARCH(1,1) prediction. It is straightforward to verify by backwards

recursion that, for any pair (αm, βm) that satisfies the parameter constraints in (18),

E(hm,t) =
ωm

1− βm
+ αm

∞∑
i=1

βi−1
m E(ϕ2

m,t−i) = 1 for all t.

Accordingly, gm,thm,t is unbiased forE(ϵ2m,t) in the unconditional sense, since E(gm,thm,t) =
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E(ϵ2m,t) for all t. Note that E(hm,t) = 1 also holds under certain types of non-stationarities

of {ϕ2
m,t}, e.g. when the zero process is non-stationary (as in the illustrations in Sections

5.2 and 5.3). A second desirable property that characterises the scaled GARCH(1,1)

prediction is that, if ϕ2
m,t and hm,t are Ft-measurable, then the S-steps-ahead prediction

satisfies limS→∞E(hm,t+S|Ft) = E(hm,t) a.s., just as if hm,t were the true DGP. Finally, a

third desirable property the scaled GARCH(1,1) predictions possess under suitable regu-

larity conditions when (αm, βm) are estimated by QML, is weak identification in the sense

of Sucarrat (2021b), i.e. E(ϕ2
m,t/hm,t) = 1, see exercise 7.6 in Francq and Zaköıan (2019).

In other words, under mis-specification, QML estimation can be viewed as a necessary

condition for weak identification under standard assumptions.

In sum, the practical implication is that the predictions of a QML estimated scaled

GARCH(1,1) specification are characterised by several desirable properties, both under

correct and incorrect specification. Note that this also applies to the “cross-sectional”

version of the scaled GARCH(1,1) prediction, hm,t = ω + αϕm−1,t + βhm−1,t, which we

illustrate in Section 5.3.

4.2 Moment estimation of the scaled GARCH(1,1) model

It is well-known that the standard GARCH(1,1) admits a heteroscedastic ARMA(1,1)

representation. If the DGP of ϕ2
m,t,T is a scaled GARCH(1,1) as in (16)–(17), the repres-

entation is

ϕ2
m,t,T = ωm + (α⋆

m + β⋆
m)ϕ

2
m,t−1,T − β⋆

mum,t−1,T + um,t,T , ω⋆
m = 1− α⋆

m − β⋆
m, (19)

where (α⋆
m+β⋆

m) is the AR-parameter, (−β⋆
m) is the MA-parameter and um,t,T = ϕ2

m,t,T −

hm,t,T is a heteroscedastic error. Kristensen and Linton (2006) used this representation

to derive a closed form estimator of the GARCH(1,1) parameters based on the autocov-

ariance functions of the ARMA(1,1) model. Let γ⋆m,t,T,j = E
(
(ϕ2

m,t,T − 1)(ϕ2
m,t−j,T − 1)

)
=

E(ϕ2
m,t,Tϕ

2
m,t−j,T )−1 denote the jth. autocovariance, j = 0, 1, 2, and let ρ⋆m(j) = γ⋆m,j/γ

⋆
m,0

denote the jth. autocorrelation of ϕ2
m,t,T under the assumption that the γ⋆m,t,T j’s are con-
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stant over t and T . For the scaled version of the standard GARCH(1,1), the expressions

of α⋆
m and β⋆

m, respectively, are

α⋆
m = ρ⋆m(2)/ρ

⋆
m(1)− β⋆

m, (20)

β⋆
m =

b⋆m −
√
(b⋆m)

2 − 4

2
, b⋆m =

ρ⋆m(2)
2/ρ⋆m(1)

2 + 1− 2ρ⋆m(2)

ρ⋆m(2)/ρ
⋆
m(1)− ρ⋆m(1)

, (21)

see Kristensen and Linton 2006, pp. 325-326. The sample counterparts of ρ⋆m(1) and

ρ⋆m(2) can thus be used to obtain consistent estimates of α⋆
m and β⋆

m under suitable

assumptions. Note that, if ϕ2
m,t,T is governed by (16)–(17), then the conditions in (17)

imply that ρ⋆m(1) > 0, b⋆m > 2 and b⋆m < ∞. If ϕ2
m,t,T is not governed by (16)–(17), the

expressions for α⋆
m and β⋆

m may still be well-defined (and real valued). In other words, the

expressions in (20) and (21) can be used to define a specific-valued scaled GARCH(1,1)

prediction under mis-specification as discussed in Section 4.1. This is formalised in the

following result.

Proposition 6 (the moment-based scaled GARCH(1,1) prediction). Suppose Assump-

tions 1–4 hold and that γ⋆m,t,T,j = γ⋆m,j for all t, T , |γ⋆m,j| < ∞, j = 0, 1, 2, m = 1, . . . ,M .

If, in addition,

γ⋆m,1, γ
⋆
m,2 > 0,

γ⋆m,2

γ⋆m,1

̸=
γ⋆m,1

γ⋆m,0

, γ⋆m,1 > γ⋆m,2,
γ⋆m,2

γ⋆m,1

> 0, bm > 2, (22)

then the moment based scaled GARCH(1,1) prediction

hm,t = (1− α⋆
m − β⋆

m) + α⋆
mϕ

2
m,t−1 + β⋆

mhm,t−1, α⋆
m, β

⋆
m > 0, α⋆

m + β⋆
m < 1, (23)

exists for m = 1, . . . ,M with α⋆
m and β⋆

m given by (21) and (20), respectively.

Feasible estimators of γ⋆m,j, j = 0, 1, 2, are given by

γ̂m,j(θ̂m,T ) =
1

T

T∑
t=1

(
ϕ̂2
m,t,T (θ̂m,T )− 1

)(
ϕ̂2
m,t−j,T (θ̂m,T )− 1

)
, (24)

where ϕ̂2
m,t,T (θ̂m,T ) = ϵ2m,t,T/gm,t,T (θ̂m,T ). Next, these can be used to obtain feasible
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estimators of α⋆
m and β⋆

m:

α̂m = ρ̂m(2)/ρ̂m(1)− β̂m, (25)

β̂m =
b̂m −

√
b̂2m − 4

2
, b̂m =

ρ̂m(2)
2/ρ̂m(1)

2 + 1− 2ρ̂m(2)

ρ̂m(2)/ρ̂m(1)− ρ̂m(1)
, (26)

where ρ̂m(1) = γ̂m,1/γ̂m,0 and ρ̂m(2) = γ̂m,2/γ̂m,0. The following result establishes the

consistency of α̂m and β̂m.

Theorem 4 (consistency of α̂m and β̂m). Suppose the assumptions of Theorem 1, the

assumptions of Proposition 6 and Assumption 7 hold. Then (α̂m, β̂m)
′ P→ (α⋆

m, β
⋆
m)

′ for

m = 1, . . . ,M .

It is worth underlining that the assumptions of this theorem are very mild, since

consistency holds under certain types of non-stationarities of {ϕ2
t} and mis-specification.

A drawback of the estimators, however, is that weak identification may not hold. The

proof of asymptotic normality of (α̂m, β̂m)
′ is contained in Appendix D.4.

4.3 Estimation of conditional correlations

Let ηm,t = ϵm,t/
√
gm,thm,t, m = 1, . . . ,M , and let ηt = (η1,t, . . . , ηM,t)

′. Accordingly,

ϵt = G
1/2
t H

1/2
t ηt and E(ηtη

′
t|Ft−1) = Rt. Note also that Corr(ϵt|Ft−1) = Rt under

the assumption that E(ϵt|Ft−1) = 0 for all t. In applications, an estimator of Rt can

be built with the standardised residuals η̂m,t, where η̂m,t = ϵm,t/

√
ĝm,tĥm,t. If Rt is

constant over time, for example, the natural estimator is the sample estimator R̂ =

T−1
∑T

t=1 η̂tη̂
′
t, where η̂m,t = ϵm,t/

√
ĝm,tĥm,t, m = 1, . . . ,M . If Rt is time-varying, then a

natural candidate is the corrected Dynamic Conditional Correlation (cDCC) specification

of Aielli (2013). Naturally, under mis-specification,Rt must be interpreted as a prediction.
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5 Numerical illustrations

5.1 An efficiency comparison

A question of practical interest is how the efficiency of the Two-step QMLE discussed in

Section 4.1 compares with that of the Iterative QMLE proposed by Amado and Teräsvirta

(2013), since the latter is more demanding computationally. The latter is also more prone

to the “curse of dimensionality” in multiple equation specifications. In single equation

specifications, Step 1 of the Two-step QMLE coincides with the first-step of the first iter-

ation of the Iterative QMLE. Table 2 contains the simulation results from a comparison,

where the DGP is the same as the g-DGP 2 in Section 4.1. The upper part of Table 2

contains the results of the gt parameters, whereas the lower part contains the results of the

ht parameters. For the gt parameters, the Iterative QMLE is not always more efficient for

T ≤ 10000. As the sample size grows very large, however, the results suggest the Iterative

QMLE is slightly more efficient. The discrepancies are so small, though, that simulation

error cannot be ruled out entirely. For the ht parameters, the numerical efficiency of the

two estimators is similar across all sample sizes. Interestingly, the standard errors are

very close to the asymptotic standard errors of the infeasible QMLE studied in Table 1,

which suggests the prior estimation of the gt parameters does not affect the efficiency of

the ht parameters in a second step.

5.2 Daily return with a non-stationary zero-process

An attractive feature of our estimator is that the stochastic component ϕ2
t need not be

stationary. To illustrate this, we revisit one of the daily stock returns investigated by

Sucarrat and Grønneberg (2022). Eros International plc. (EROS) was an Indian mul-

tinational mass media conglomerate (a “Bollywood” company) that merged with the US

company STX Entertainment in April 2020. The left graph of Figure 1 depicts the daily

returns at the New York Stock Exchange (NYSE) from 21 December 2009 to 4 February

2019 (T = 2295). The datasource is Bloomberg. In the beginning of the period the

primary listing of the stock was in India. This explains all the zeros until November
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2013. Thereafter, there are few zeros. The return series thus exhibits a clear break in the

unconditional zero-probability, so the zero-process is non-stationary over the sample. The

return process ϵt and the transformation ϕ2
t = ϵ2t/E(ϵ

2
t ) are therefore also non-stationary.

Again, to keep notation simple, we suppress the subscripts m (since m = 1) and T .

Interestingly, the 500-day moving average of squared return in the right graph of

Figure 1 does not suggest in a clear way that there is a break in the unconditional

volatility E(ϵ2t ) in November 2013. Instead, the graph suggests the break or breaks occur

later, namely in October 2015 and in October 2017. To illustrate the estimation of a

piecewise constant log-linear specification gt, we use it to investigate whether there are

breaks at the aforementioned points of time. More precisely, the data suggest the possible

break-locations are 11 November 2013, 14 October 2015 and 6 October 2017, respectively.

In terms of re-scaled time these correspond to (c1, c2, c3)
′ = (0.427, 0.638, 0.855). Our

estimated model is

l̂n gt = 1.795
(0.4174)

+ 0.351
(0.4355)

I(t/T ≥ c1) + 1.215
(0.2342)

I(t/T ≥ c2)− 0.912
(0.2545)

I(t/T ≥ c3).

The numbers in parentheses are the standard errors of the estimates. These are computed

as the square root of the diagonal of Σ̂/T , where Σ̂ = Â−1B̂Â−1 is the estimate of the

asymptotic coefficient covariance. A Bartlett kernel is used in the computation of B̂,

and the truncation lag is obtained as the integer part of 4(T/100)(2/9). The t-ratios

of the break-size estimates are 0.806, 5.181 and −3.583, respectively. So two-sided t-

tests at common significance levels (i.e. 10%, 5% and 1%) suggest there are breaks at

c2 and c3, but not at c1. Finally, the second step QMLE (see Section 4.1) returns an

estimated scaled GARCH(1,1) prediction equal to ĥt = 0.873+0.127ϕ̂2
t−1+0.000ĥt−1 with

T−1
∑T

t=1 ϕ̂
2
t/ĥt = 1.044. In other words, the optimal scaled GARCH(1,1) prediction –

optimal in the sense that it is both unbiased and satisfies the necessary condition for weak

identification – is characterised by an ARCH parameter aqual to 0.127, and a GARCH

parameter close to zero. Second step estimation with the moment method (see Section

4.2) gives estimates that violate the parameter conditions, and the value T−1
∑T

t=1 ϕ̂
2
t/ĥt

is far from 1 (i.e. the necessary condition for weak identification fails).
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5.3 Time-varying intraday periodic volatility

To model intraday periodic volatility, Andersen and Bollerslev (1997), and Mazur and

Pipien (2012) specify gt(θ) as a Fourier Flexible Form (FFF) in terms of nominal time

t. No asymptotic results are established in either work. More recently, He et al. (2019),

and He et al. (in press), establish asymptotic results for two classes of periodic smooth

transition models. But they do so under restrictive assumptions on ϕt (it is iid normal

in the former, conditionally iid normal in the latter). In our case, by contrast, it can be

substantially dependent in unknown ways, both intradaily and interdaily. Also, it can

be non-stationary. To illustrate our results, we use the vector of seasons representation

to model the evolution of intraday unconditional volatility. In effect, our EBE estimator

becomes a “period-by-period” estimator (see e.g. Escribano and Sucarrat 2018).

The common practice of estimating the intraday unconditional volatilities with cross-

day averages of squared return is a special case of period-by-period estimation via the

vector of seasons representation. Consider, for example, the intraday returns ϵm,t, m =

1, . . . ,M , of day t. Often, the sample averages T−1
∑T

t=1 ϵ
2
m,t, m = 1, . . . ,M , are used

to estimate the intraday unconditional volatilities E(ϵ21,t), . . . , E(ϵ
2
M,t). The collection of

sample averages is a special case of the period-by-period estimator. But it is only consist-

ent in the special case where the unconditional intraday volatilities are constant across

days, i.e. for each m = 1, . . . ,M we have E(ϵ2m,t1
) = E(ϵ2m,t2

) for all t1, t2. By contrast,

period-by-period estimation as sketched here can also be used to estimate unconditional

intraday volatilities that vary across days. Again, to simplify notation, we suppress the

subscript T .

For illustration we use intraday hourly USD/EUR exchange rate returns. Let Sm,t

denote the exchange rate at the end of hour m in day t, and let ϵm,t = 1002 · (lnSm,t −

lnSm−1,t) denote the hour m log-return denominated in basis points. The left graph of

Figure 2 plots the hourly returns at Forexite (https://www.forexite.com), a currency

trading platform, from 2 January 2017 to 31 December 2018. This corresponds to 12 184

hourly returns. Only trading days are included in the sample (i.e. weekends are excluded),

and a trading day contains M = 24 returns. The first return of a trading day covers the
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interval from 00:00 CET to 01:00 CET, whereas the last covers 23:00 CET to 00:00 CET.

The right graph of Figure 2 contains the sample averages of squared returns across days,

i.e. T−1
m

∑Tm

t=1 ϵ
2
m,t, where Tm is the number of observations available for period m. As is

clear from the graph, the intraday hourly unconditional volatility is time-varying. It is at

its lowest at the end of the day at 24h CET, and it is at its highest at 15h CET.

To shed light on whether the intraday unconditional volatilites are constant across

days, we estimate a quadratic spline function similar to that of Engle and Rangel (2008)

with re-scaled time and four knots at equidistant locations, i.e.

ln gm,t = δm,0 +
4∑

l=1

δm,l(t/T − cl)
2I(t/T ≥ cl), (c1, c2, c3, c4) = (0.2, 0.4, 0.6, 0.8),

for each period m = 1, . . . ,M . Table 3 contains the estimation results together with a

Wald-test of H0 : δm,1 = · · · = δm,4 = 0. Under the null the unconditional volatility of

period m is thus constant and equal to gm,t = exp(δm,0) for all t. The p-values of the test

are contained in the square brackets of the last column. Out of the 24 tests, 8 reject the

null at the 5% significance level, and 4 reject the null at 1%. Without time-varying period

m volatilities, we should on average expect 1.2 rejections at 5%, and 0.24 rejections at 1%.

Accordingly, the results support the hypothesis that some of the unconditional intraday

volatilites are time-varying across days.

Since E(ϕ2
m,t) = 1 for allm and t, the intraday or “cross-sectional” scaled GARCH(1,1)

prediction hm,t = ω+αϕm−1,t+βhm−1,t is well-defined and characterised by the properties

sketched in Section 4.1. In other words, it is straightforward to estimate a single, scaled

GARCH(1,1) prediction of volatility for both within and across days, even when the

gm,t’s and ϕ2
t ’s are both non-stationary. The QML estimated specification is ĥm,t =

0.106+0.052ϕ̂2
m−1,t+0.8418ĥm−1,t with T

−1
∑T

t=1 ϕ̂
2
t/ĥt = 1.0004. Second step estimation

with the moment method (see Section 4.2), by contrast, again returns estimates that

violate the parameter conditions, and again the value T−1
∑T

t=1 ϕ̂
2
t/ĥt is not close to 1.
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6 Conclusions

We conclude by summarising our contributions. We derive a unified and general frame-

work for consistent estimation and asymptotically normal inference in a large class of

models of time-varying unconditional volatility, both univariate and multivariate. Our

framework is based on the equation-by-equation version of the Gaussian QMLE, and it

is characterised by several attractive properties. One is its ease of implementation, since

the equation-by-equation nature of the estimator reduces the curse of dimensionality in

multivariate models, and since the exact specification of the conditional volatility dynam-

ics need not be known or estimated. In empirical applications, models of the conditional

volatility dynamics can be fitted in a second step. Our multivariate result can be used

to estimate non-stationary periodic volatility by framing the problem via the vector of

seasons representation. This leads to a period-by-period estimator, whereby not only

the variation in intraday unconditional volatility is modelled, but also the variation over

days for each intraday period. Another novel property of our results is that they are

valid when the zero-process of financial returns is non-stationary. This is important, since

recent studies document that financial returns, both daily and intradaily, are widely char-

acterised by a non-stationary zero-process. In the multivariate case, our results are also

valid when the time-varying correlations are non-stationary, even when this is not due

to a non-stationary zero-process. Next, due to the assumptions we rely upon, our res-

ults extend directly to the Multiplicative Error Model (MEM) interpretation of volatility

models. Finally, we have illustrated the usefulness of our results in three applications.
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Francq, C. and J.-M. Zaköıan (2019). GARCH Models. New York: Wiley. 2nd. Edition.

Hafner, C. and O. Linton (2010). Efficient estimation of a multivariate multiplicative
volatility model. Journal of Econometrics 159, 55–73.

Harvey, A. C. and G. Sucarrat (2014). EGARCH models with fat tails, skewness and
leverage. Computational Statistics and Data Analysis 76, 320–338.

He, C., J. Kang, A. Silvennoinen, and T. Teräsvirta (2023a). Long monthly temperat-
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average of squared returns (right), 21 December 2009 – 4 February 2021 (see Section 5.2).
Datasource: Bloomberg

31

https://journal.r-project.org/archive/2021/RJ-2021-057/
https://journal.r-project.org/archive/2021/RJ-2021-057/
https://doi.org/10.1016/j.ijforecast.2021.03.008
https://doi.org/10.1016/j.ijforecast.2021.03.008


●

●●●

●

●
●

●●●●
●●
●

●

●

●●

●

●
●

●
●

●●●

●
●●
●●

●

●

●

●
●
●

●●
●

●

●

●

●●
●●
●
●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●●

●

●

●

●●
●
●

●●

●
●

●
●
●●
●
●●●
●
●

●

●
●

●

●●

●
●

●

●
●●
●●

●
●●●

●
●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●●

●

●

●

●

●
●
●●
●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●
●
●

●

●

●

●●●

●

●●
●
●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●
●

●

●
●

●
●
●
●
●
●
●●
●

●

●

●●

●●
●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●
●●●
●●

●
●

●

●●

●

●

●●

●
●

●

●●
●
●
●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●
●

●

●●●
●
●
●●●●●
●

●●

●
●
●
●

●

●

●
●
●

●
●

●
●●
●

●●
●●●

●●

●

●

●

●

●
●●●

●

●
●
●

●

●
●
●●●●
●
●●
●

●●
●

●

●

●

●

●●

●
●

●●

●

●

●
●

●●●●●

●

●
●●

●●

●●

●

●

●

●●●●
●●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●●
●

●●
●
●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●●
●

●

●●

●

●

●

●

●
●

●
●
●
●

●
●

●
●

●●
●
●●
●
●●

●

●
●
●●●●

●

●●●

●

●

●

●

●

●
●

●

●

●●
●●
●

●
●
●
●

●●
●
●●

●

●
●

●

●
●
●●
●●●
●

●
●
●

●●

●
●●●

●
●●
●●

●
●●●●
●●
●●●
●
●●

●

●

●●

●

●

●●
●●

●

●
●

●
●

●●
●

●●●●
●
●
●
●●

●

●

●

●●

●
●

●

●
●
●●●
●

●
●
●
●
●
●
●●
●

●

●

●●●
●
●
●

●●

●

●

●
●●

●

●
●
●
●●●●
●
●

●

●●

●●

●

●
●
●

●

●●
●
●
●●
●
●
●●●●

●

●

●

●

●

●●
●

●

●

●

●●●●●●

●

●
●
●

●

●●
●
●
●
●
●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●●
●
●
●●●●
●●
●
●●
●●●
●

●

●
●

●●●
●

●

●●
●●
●
●
●●
●
●●
●

●

●
●
●●
●

●●●●●
●

●

●●●
●●●

●●
●

●
●

●

●●
●

●

●
●
●
●
●
●
●●●●
●
●●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●●
●
●
●●●

●

●
●

●
●●●
●
●

●
●
●

●

●

●

●●
●
●
●

●

●

●●
●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●●
●●●

●

●

●

●●●

●

●

●●

●
●
●
●
●
●
●●

●
●●●
●●
●
●

●●
●

●

●●
●

●●●●

●

●

●●●

●●

●

●
●●

●

●
●
●

●●
●
●

●

●
●
●

●

●●●

●

●

●
●
●●●●

●

●

●

●
●●●●

●

●●
●●
●
●●●
●
●●
●●●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●

●
●
●●●
●
●
●

●

●

●●

●●
●●

●
●

●●
●●
●●●

●
●●

●

●●

●

●
●

●

●
●
●
●

●

●
●●
●●
●
●●●
●
●
●●
●●
●●
●●●●●
●●

●●

●

●
●●
●
●

●

●

●●
●●
●
●

●

●●
●
●

●

●

●

●
●

●

●

●
●
●●
●
●
●
●●●
●

●

●

●
●●●

●

●

●

●
●
●●

●
●

●
●
●
●●
●

●

●
●

●

●

●●

●

●
●
●●
●
●
●●●●
●
●●
●●
●

●
●

●

●
●
●
●●
●●

●
●
●
●●
●●●●●●●●
●●
●

●●●
●●●

●●
●

●

●

●

●

●

●

●
●

●

●
●
●●●●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●●
●
●●
●●●

●

●

●

●

●

●

●
●
●
●●
●
●
●
●
●
●●
●
●
●●
●
●
●●

●

●

●●●●

●
●

●●

●●●
●

●

●

●
●●
●
●
●
●

●

●●

●

●

●●

●

●●

●

●●
●
●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●
●
●
●●
●●
●●
●

●

●

●

●

●

●
●
●
●
●●
●

●●●●●●

●

●
●

●

●
●
●

●

●

●
●●●
●
●
●
●
●
●

●

●

●

●
●
●

●
●●
●
●

●

●

●

●

●
●

●

●
●

●

●
●●●●
●
●●

●

●
●●
●
●

●
●●●●
●●
●

●●
●
●

●●
●●
●●●
●
●●●

●
●

●●
●

●

●

●●

●

●
●●

●

●
●●
●●
●
●

●
●●
●

●

●
●●
●

●

●

●
●

●

●
●
●
●

●
●●

●
●●
●
●●
●
●
●

●

●
●

●

●
●
●●

●

●

●

●
●
●●●●●●
●
●

●

●●
●
●
●

●

●
●●
●
●
●●●
●●●
●
●●
●●●

●

●
●

●●

●

●

●●
●
●

●
●●
●●●●●
●
●
●●●●●
●
●

●

●●●

●

●

●
●

●

●●●●●
●●●●
●

●

●●

●●
●
●
●
●
●
●
●
●
●
●●●●
●

●
●
●●

●
●
●

●

●●
●

●

●
●

●●

●●

●

●
●
●
●
●●●

●

●
●
●
●●●

●

●
●

●
●●●
●
●
●
●
●●●
●
●
●
●
●

●●●●

●
●

●

●

●●

●
●●●●
●
●●

●

●●
●●●
●

●

●●●

●●

●●●

●

●

●●
●
●
●
●●
●●●

●

●
●
●
●
●

●

●

●●

●●
●
●
●
●●●●
●

●
●
●
●
●●●
●●
●

●

●

●
●●
●
●●●

●
●
●●
●
●●

●
●

●

●
●
●
●
●●

●●
●

●

●
●●
●
●
●

●

●●●
●●
●●
●●
●
●

●

●
●
●

●
●
●
●
●●●●●●●●●
●●

●

●●

●
●

●

●

●

●●
●

●●
●
●
●●
●

●●
●
●

●
●

●

●●●

●

●

●

●●

●

●
●●●●●
●
●
●
●
●●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●
●
●

●●

●
●

●
●
●

●●●

●●
●
●●
●

●
●
●●

●

●●

●
●

●
●

●

●

●●

●

●●

●

●●●

●

●●●
●●

●
●●
●
●

●
●

●

●

●
●

●

●
●

●
●●●●
●●●●●

●
●
●

●

●

●

●

●

●
●

●
●
●
●
●●●●●
●
●●●●

●

●
●

●

●
●

●

●

●

●●
●
●
●

●
●

●●
●●●●
●●
●
●●
●
●

●

●

●
●
●●
●
●●

●

●●
●●●
●
●
●
●

●
●
●

●

●●
●

●

●

●
●
●
●
●●
●
●●●●
●

●
●●
●
●
●●●
●●

●

●●
●●●
●
●
●●
●
●
●
●●
●

●

●
●

●
●

●
●
●

●

●

●

●●
●●
●●●●
●●●
●●

●

●

●●●

●

●●
●

●
●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●
●
●●●
●●●●

●
●

●

●

●
●●
●

●

●
●

●

●
●

●
●
●●●
●
●●●●●●
●

●

●
●
●
●

●
●●●
●

●●●●●●
●

●
●

●●
●●
●

●●
●

●

●

●

●●●
●
●●●
●●●●
●●
●●●

●

●●
●
●
●

●

●

●
●

●

●●
●

●
●
●
●
●●●●
●●●
●
●

●

●

●●●●●

●
●●
●●●●
●●●●●

●
●●

●

●
●

●

●

●

●

●
●
●

●
●●

●

●●●
●
●
●
●●

●

●

●●
●
●

●

●

●

●

●

●

●●●
●
●

●

●

●●

●

●●
●
●●

●

●●

●
●

●
●

●

●●

●
●

●
●●●
●

●●●
●
●
●●
●

●

●
●●

●
●

●

●
●●●

●

●
●●●
●

●●
●

●
●

●●●

●●

●
●

●
●●●●●
●
●
●
●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●●●●
●

●
●●●●●●●

●

●

●

●

●

●
●
●

●
●●
●

●
●
●

●

●
●

●

●●●

●

●

●

●
●
●
●

●

●
●
●
●
●
●
●●
●
●●

●

●
●●
●

●
●●

●

●

●

●●

●

●

●

●●●

●

●●●●
●●●
●●●●
●
●
●

●

●●
●●
●●
●●●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●●●
●●
●●●
●●

●

●
●

●
●

●
●

●●

●
●●
●

●

●
●
●
●
●

●

●
●●
●

●

●●

●

●●
●
●●

●
●
●●●●●
●

●
●●●●●●●●
●
●●

●

●

●
●●
●
●
●●●●●●
●
●●●●
●
●

●

●

●
●

●
●●●
●
●●●●
●●
●●
●●●
●
●

●

●
●●●
●
●

●●
●
●

●

●
●●●
●
●
●●●●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●
●●

●
●●

●

●

●
●

●

●

●
●
●
●●
●

●

●●●
●

●
●

●

●
●●
●

●

●

●
●
●
●
●

●●●●
●●●
●

●
●
●

●

●●
●
●

●
●

●
●●
●●●
●
●

●●
●●
●
●●●●
●
●
●
●

●

●

●●
●

●

●

●●

●

●
●
●

●
●
●●●
●●
●
●●●●

●

●●●●

●

●●

●●●

●

●●●
●

●●●●
●
●●●

●
●
●

●

●
●
●
●●●●

●

●
●●●●
●
●●●●●

●●
●
●

●

●

●
●

●

●●

●
●
●
●●

●

●
●●●●

●

●

●●

●

●
●●●●
●
●●
●●●●
●
●
●
●●●●
●

●

●
●
●●
●

●
●
●●●
●
●

●
●●●●●●●●●
●●
●
●●

●

●

●

●●●●
●
●●●●●●
●●●●●
●
●

●
●●●●●●
●

●

●

●●
●●●●●
●

●
●
●●
●●
●●●
●●

●

●
●
●●●●●
●
●●

●●
●
●●
●

●
●

●●

●

●
●
●●

●

●
●●●●●●●
●●●
●

●●

●

●●●●
●

●

●

●

●
●

●

●
●

●

●
●
●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●●●●●
●●
●

●

●●●
●
●

●

●
●
●
●
●●

●

●

●●

●

●
●●●●
●

●

●
●●
●●●●

●

●
●
●●

●

●
●●
●
●●●●
●●
●

●

●
●

●●
●
●

●

●●
●●
●

●
●
●●●●
●●
●●
●
●

●

●

●●
●
●●
●
●
●

●
●
●●●
●●
●●
●
●

●●●●
●●

●●

●

●

●

●
●
●
●●●●
●
●●
●●●

●
●●●
●
●

●

●

●

●

●
●●●

●
●●●
●●●●
●●
●●●
●

●●●
●
●●●●●

●
●

●●
●
●
●
●

●

●●●
●

●

●

●
●

●
●
●●●

●
●
●

●●●●●●●●●●●●

●
●●●●●
●●
●●●

●

●

●

●
●
●
●●
●

●

●
●

●●●

●

●●
●

●

●

●

●

●

●●
●

●
●●●
●
●●
●
●
●
●

●
●
●●

●

●

●

●

●

●●●●

●

●
●

●
●●
●●

●

●●
●
●

●
●●

●

●
●

●●●
●
●
●●

●
●●
●●●●
●

●●
●●●●●●
●●●●●●●●

●

●

●●●
●

●●
●

●

●

●

●

●

●
●
●

●●●●●●●●●●●●●●●

●●
●
●
●●●
●
●
●
●●●
●
●
●
●●

●

●

●
●

●

●

●
●●

●

●

●

●

●●●●
●●●
●
●●●●
●●
●

●

●

●

●●●●
●●
●

●●
●

●

●●

●
●●
●
●●

●

●

●
●

●
●

●

●

●
●
●
●●●●●
●●●●
●
●●●●
●

●●
●

●
●

●

●

●
●
●

●●
●●●●●
●●

●●
●●
●●

●●
●●
●
●
●
●

●

●

●
●●

●

●●

●
●●

●●●
●
●

●
●●

●
●

●

●

●●●

●
●●

●●

●

●●

●

●
●
●●
●●

●

●

●

●
●
●

●

●
●

●●

●
●●●●
●
●

●●

●
●●●
●
●

●●

●

●
●
●●

●●●

●●
●●
●

●
●●●
●
●●
●●

●
●

●
●

●

●
●●●
●●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●●
●

●

●
●●●●

●

●
●
●
●
●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●
●
●●

●
●●
●●●●●●●

●

●

●
●
●

●●●

●
●

●

●

●●
●●●
●

●

●

●

●
●
●

●

●●

●

●●●●●●●

●
●

●

●●

●
●●
●●●●

●

●

●

●

●

●

●

●
●●●

●

●
●●
●●
●●●●
●

●

●
●●

●

●

●
●
●
●●●●●●
●●●●
●●●
●

●

●

●

●

●

●

●
●●●

●

●●●
●
●●●●
●
●
●●
●
●●●●

●

●

●

●
●
●

●

●●
●
●

●

●●●
●
●

●

●●
●
●
●
●
●

●●

●

●
●
●●
●
●
●●
●●●

●●

●
●

●
●
●

●

●●
●

●●●
●

●
●●●●●●
●●●
●●

●

●

●

●

●●

●
●●

●●

●●
●●
●●

●

●●
●●

●
●

●●

●

●
●

●

●

●

●
●●

●
●
●●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●
●
●●●
●●

●

●
●
●●
●●●●
●●●

●

●

●
●

●

●

●

●●
●
●
●●
●●●
●
●●●
●

●

●●

●

●

●●

●
●●

●
●
●
●●●●
●

●●
●●●●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●●●
●●

●
●●
●

●

●
●
●●

●

●
●●●●
●

●●
●●
●
●
●
●

●●●●
●●

●
●
●

●
●●

●

●

●

●●

●

●

●

●

●●●●

●

●
●

●●●

●

●
●

●●

●
●●●
●
●
●
●
●●●●
●●

●
●

●

●

●
●

●

●●●
●
●
●

●

●
●
●
●
●●●●

●●●

●

●

●
●

●

●●
●

●

●

●●
●
●

●
●
●
●

●

●●
●
●

●

●●

●●●

●●

●

●

●

●●
●●
●

●●
●●●●●●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●●
●
●●
●●

●

●●●

●

●●●

●

●

●●●●
●
●

●
●
●
●●●●

●

●
●

●

●

●

●

●

●●●

●

●●●
●●
●

●

●
●
●
●

●

●●

●●
●●
●

●

●

●●
●
●●●●●
●
●●●●●
●

●

●

●

●

●

●

●

●●

●

●●
●

●
●●
●●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●
●
●●●

●

●●

●

●

●●

●
●

●●

●
●

●

●

●
●
●
●●
●

●
●

●●

●
●●

●

●

●

●

●

●●

●
●
●

●●

●

●●●
●
●●

●

●●●●●

●

●●

●

●
●

●

●
●●

●

●

●
●●
●

●●●
●●
●
●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●
●
●
●
●

●●●

●

●

●

●
●
●●

●●
●●

●●
●●●
●●

●

●●
●

●

●

●●

●

●
●

●

●●●
●●●●●
●●●
●

●
●

●●

●

●

●
●
●
●

●

●●●●●●●

●

●
●●●

●

●
●●

●
●

●

●
●●
●●

●

●●●
●

●

●
●

●
●●●

●
●
●

●
●
●

●●

●

●

●

●
●●

●

●●
●
●

●
●●●
●
●

●

●
●

●

●

●

●●●

●

●
●
●

●

●●●●●●
●

●

●
●

●
●
●
●●

●●
●●
●●●●
●
●●●●●
●
●

●

●

●
●

●

●●

●●

●
●

●

●●
●●●●
●●●●

●
●

●

●

●

●

●●

●

●●
●

●●
●
●●
●●
●
●
●
●

●

●
●

●
●●

●

●

●●

●

●●

●●
●

●

●

●●●
●

●●

●

●●

●

●
●●
●

●

●

●

●

●●

●
●●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●●
●

●
●●

●

●
●●

●●

●

●

●

●
●
●
●
●

●●
●●●●

●●

●

●●●●
●

●●
●●

●
●

●●●
●●●●●●●
●
●●
●●●
●
●

●●●

●
●
●
●●●●

●
●●
●●●●
●
●●●

●

●●
●●

●●●●

●

●

●

●

●

●
●●
●●
●
●
●
●●
●

●

●
●●
●●
●●

●●●●
●●

●

●●●
●

●

●●
●●
●

●

●
●

●

●

●

●●

●

●●●

●

●
●●●
●

●●

●●●●●●

●

●
●
●●

●

●●●

●●

●
●●●●
●●●●●

●

●
●
●

●●
●
●

●

●●

●

●

●
●
●●
●

●

●
●
●●
●

●●

●
●●

●

●

●

●

●

●
●●
●

●

●
●
●

●
●
●

●●

●

●●

●
●●
●●

●

●
●
●

●●●
●
●

●●

●

●●●
●

●

●●
●●

●
●
●●
●

●
●

●●●
●●●
●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●
●●
●

●

●●

●●●

●

●
●

●●

●
●

●●

●
●●●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●

●
●●●●

●●●●●●

●
●
●●

●

●●

●

●

●

●
●
●
●

●●●
●●
●●
●
●●
●
●

●
●●●
●●●
●
●●

●

●

●●●
●●
●●●
●
●

●
●
●
●
●
●●

●
●

●

●

●●●

●
●●
●
●

●

●
●●●

●●●●
●

●

●

●

●

●

●●

●
●

●●

●●●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●
●
●
●●●●●

●
●
●●

●

●
●

●●

●

●
●

●
●
●

●

●
●

●
●
●

●
●●
●●
●

●

●
●
●

●●

●

●
●●●
●●

●
●●●●●

●●

●
●

●

●

●

●

●

●

●
●
●
●●
●
●

●●

●

●
●●●●

●
●

●●●
●●

●●

●●
●●
●●●
●●●●●
●●
●
●

●●●
●●

●

●

●

●

●
●
●●
●

●

●●

●●
●
●
●●
●

●

●

●●●●

●●

●●
●●●●●

●

●
●●●●

●
●

●●●
●●

●

●●
●

●

●
●
●
●●

●
●●●●●●
●●
●

●

●
●

●●

●

●●●●●●●●●

●●
●
●●●
●
●

●●

●

●

●

●

●

●

●

●
●
●
●●●
●

●
●●●
●●

●

●

●

●●

●

●

●

●●
●●●●●
●

●●
●

●

●

●●

●

●

●●●

●

●

●

●

●●●●●●●
●
●●●●●

●

●
●

●
●
●

●

●
●●
●

●●

●
●
●
●
●
●
●
●●
●●
●

●
●

●●●

●

●

●
●

●

●●

●
●●

●

●

●
●

●●
●●

●

●

●

●
●●●

●

●
●
●●●●
●
●●
●●

●

●

●
●
●
●

●

●
●●

●●●

●

●

●

●●●●

●

●
●
●
●
●
●●

●

●

●●
●

●

●●
●●

●

●
●●
●●●
●

●

●●●●●
●
●

●

●

●
●

●
●

●

●

●●
●●●●

●
●●●●●
●●●
●

●
●
●

●

●

●

●
●
●●

●

●
●
●●●
●

●

●
●
●
●●

●

●
●●●
●
●●
●
●●●●●●●
●

●●

●

●
●●●

●●

●
●

●●
●
●

●

●
●●
●
●
●

●
●
●
●
●
●
●
●

●

●
●
●
●

●●

●●
●●●●●
●●

●
●●●●
●

●

●

●
●
●
●

●

●
●

●

●●

●

●
●
●
●●
●

●●
●
●
●●
●
●

●

●●
●●

●
●

●

●●

●
●
●●●
●●
●●
●●●

●●

●●
●
●

●

●

●

●

●

●

●●

●

●●

●●
●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●
●●●●●

●

●

●

●

●
●
●
●
●
●●
●●●
●
●●●●●●
●●
●
●●

●
●
●

●
●

●●

●●

●
●●
●●●

●

●●

●

●
●

●●
●●
●

●

●●

●

●●
●
●●
●●
●
●
●
●●●
●●
●●
●●●

●

●

●

●
●
●
●
●

●

●●
●
●●●
●●
●
●

●

●

●

●
●

●●

●

●
●
●

●

●
●
●
●●●●●●●●
●
●
●●
●
●

●

●

●
●

●

●
●
●

●
●●●
●
●●●●●●

●

●●
●●

●

●
●
●
●
●●●

●●
●●
●
●
●

●
●●

●

●●●

●

●

●

●

●●●
●

●

●●●
●
●●

●

●
●●●●

●

●

●

●

●

●
●●

●

●●

●●
●●

●●

●●●
●●●
●

●

●
●

●
●●

●
●

●

●●

●
●
●

●●
●
●
●●
●
●●
●
●
●●●

●
●

●
●

●

●
●●●●●●
●●●●●
●

●●●●

●

●

●

●
●
●
●

●
●●
●
●

●
●●
●
●
●

●

●
●

●

●

●

●●

●
●

●●
●
●●●
●●
●●
●

●
●●●●
●
●
●●
●●
●

●

●

●●
●●
●
●
●●
●
●
●●●
●

●
●
●●
●
●
●
●

●

●
●

●●
●●

●
●
●●●
●
●●
●
●
●
●
●●

●
●●

●

●

●

●
●●
●●

●

●
●●●●
●

●
●●●●●
●
●

●
●

●●●
●●●●

●

●

●●
●
●

●
●
●●●
●

●
●●●●

●●

●
●●

●

●

●
●

●
●
●
●

●

●

●

●
●

●
●

●

●●
●
●
●●
●●
●
●
●●

●●●

●
●
●
●

●

●

●●

●

●●
●●

●
●
●●●●●

●

●
●●
●
●●

●
●●●

●

●

●●

●

●

●
●●
●
●

●

●
●
●
●●

●

●●●
●●
●

●

●

●●
●

●
●
●●
●●
●●●●●

●

●●

●

●●

●●
●

●
●

●

●●●●●●●
●
●●●
●●●

●

●

●
●

●
●

●

●
●
●
●●●●
●

●●
●
●●●
●
●
●

●

●

●

●
●
●
●

●

●
●●●
●
●
●●
●
●

●
●

●

●
●●

●

●●

●

●

●

●

●

●●●
●
●
●●

●

●

●●●
●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●●
●
●

●
●●
●

●

●

●
●

●

●

●●

●

●
●●
●
●●●
●●
●
●●

●

●
●
●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●●

●

●●
●

●
●
●●

●

●●
●●●

●●●

●
●●

●

●
●
●

●

●●
●
●
●
●
●

●

●●●

●●

●
●
●

●●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●
●●
●●●●

●

●●●
●●
●

●

●

●
●

●

●●
●
●

●

●●

●

●
●
●

●

●

●●●
●
●

●

●

●

●●
●
●

●●

●

●
●

●

●●

●

●
●

●
●●●●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●●●
●
●

●
●

●

●
●

●
●●●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●
●

●

●●

●●

●

●

●
●●
●●

●

●

●

●

●
●●
●●
●●
●

●●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●●
●
●●●
●

●
●●

●

●
●
●●●

●

●

●●

●

●

●

●

●

●

●
●

●
●●
●
●

●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●●●●

●

●
●
●

●

●

●●

●

●

●

●

●●

●

●

●●
●
●●
●
●●●●

●
●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●●
●●●
●●
●

●
●●
●

●

●

●

●

●
●

●

●●

●
●●●
●●●
●

●

●
●

●●
●

●

●●

●

●●
●
●
●●
●

●

●
●●
●●
●●
●

●

●

●
●●

●

●

●

●
●
●
●
●●
●
●●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●●
●
●

●

●●●●

●
●

●

●

●

●

●
●

●●●
●●
●

●

●
●
●

●●

●
●

●

●●

●

●
●
●
●

●

●

●

●
●●

●
●●●

●
●

●

●●

●

●

●

●

●

●
●
●●●●●●

●

●●
●●●
●
●

●

●

●
●
●

●

●

●

●

●●●
●●●●●●●●●
●

●

●

●

●

●●●

●

●
●●

●

●

●
●
●●

●

●

●
●●●
●
●

●
●●

●●

●

●

●

●
●
●

●

●

●

●
●●
●●
●●
●
●
●
●

●

●●

●

●
●
●
●
●
●

●

●●
●
●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●
●●●●
●
●

●

●●

●

●●●
●

●●●
●
●

●

●

●

●
●

●●●
●●

●

●
●
●

●
●●
●

●●

●
●●
●●
●●

●

●●
●●●
●●●
●●
●
●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●●

●
●●●
●
●●

●

●
●
●
●●
●●●
●
●
●

●●
●

●

●

●
●

●
●●

●

●

●

●
●
●
●

●
●

●●●

●
●

●

●●●
●
●
●●●
●

●●
●●●

●

●

●
●

●

●

●

●

●●●

●

●
●●
●●
●
●●

●

●

●●

●

●
●●●●
●
●
●
●
●●●●●
●
●
●●
●

●

●
●
●●

●

●

●

●
●

●
●●

●
●●
●
●

●

●

●
●●
●
●
●
●●

●
●●

●

●●

●●
●
●
●●
●●●●
●
●
●

●

●

●

●

●●
●

●
●
●●
●
●●●
●●●●●●
●●
●

●

●
●
●

●

●●

●

●

●

●

●

●●●●●
●●
●
●
●●
●●
●

●●

●
●
●
●
●●
●
●●
●●
●●

●
●●●
●●

●
●●
●

●●
●

●

●

●

●

●

●
●●●●●●
●●●●
●
●●
●●●

●
●●

●
●

●●
●●

●●
●●●●●
●●
●
●
●

●

●
●●
●●
●
●

●

●
●●●●
●
●●
●●

●
●
●

●

●
●●●

●
●

●

●

●●●
●●●
●
●●
●
●●
●●
●●
●

●

●
●
●

●

●

●

●

●

●
●
●●

●

●●
●
●

●

●

●

●
●
●

●

●

●

●

●
●●
●
●

●

●
●
●
●

●
●●●●

●

●

●

●

●
●

●
●●

●

●
●
●
●
●

●

●

●

●
●
●●
●●

●
●●

●●●

●

●
●
●●●
●
●

●●●

●●
●●
●●

●

●

●

●
●
●
●
●●

●
●
●●●

●
●●●●●●●

●

●

●

●●
●
●

●

●

●

●
●●

●

●
●

●
●●●●
●●●●●

●

●●
●●

●
●●

●

●

●●
●
●●
●●●●

●
●●●●

●●●
●●●●●●●

●

●
●
●
●●

●
●
●●●
●
●●
●●●

●

●
●●

●

●●

●
●
●●●●

●
●
●
●
●
●

●

●
●●

●

●

●

●

●

●

●
●
●
●
●
●●
●●●●●●●
●

●

●
●

●●
●
●●
●
●

●
●
●
●
●●●●
●
●●
●
●

●
●

●
●
●

●

●

●

●

●
●
●●●
●
●
●●
●
●

●
●
●●●
●

●●
●
●

●●

●

●

●
●●
●
●
●
●
●●●
●●
●
●
●
●

●
●

●

●

●

●
●●
●●●●●●
●

●
●●
●

●

●
●

●●
●

●

●

●

●●

●●
●

●
●
●
●●
●●
●●●●
●

●●●●●●●
●
●
●
●
●
●
●
●●●●
●●
●

●
●
●●

●

●●

●
●●

●
●

●

●●●
●●●●●
●

●
●●●●

●

●
●

●●

●
●
●
●

●

●●
●

●
●●
●
●
●
●
●●

●

●
●●
●
●
●

●

●●

●
●
●
●●●●●●●●●
●
●

●

●●

●●

●

●
●●

●●●●
●
●
●●●●
●
●
●●

●

●
●
●●
●●

●●
●
●

●●
●●
●●●
●●

●
●●●
●●

●

●
●

●

●
●●

●

●
●
●

●

●●●●
●
●●
●●●●

●
●●

●●

●
●

●
●

●

●
●●●●●
●
●●●●
●

●

●

●●
●●

●

●
●
●

●

●
●
●●●●●●
●●●●

●
●

●●●
●

●

●

●

●●

●
●●
●●●
●

●●

●
●●●
●

●

●

●
●

●

●●

●

●
●

●
●
●
●

●●●●●
●
●
●
●●

●

●●●

●

●

●

●

●

●

●●
●●
●●
●
●●●●●●

●
●
●

●
●

●

●

●

●
●●
●

●
●

●
●
●●
●●
●●
●

●●

●

●
●

●

●

●

●

●

●
●●
●●●●●●
●●●●●
●

●

●●●
●

●●

●
●

●

●●●
●
●
●●

●

●●●●

●
●

●

●●●
●

●

●

●
●
●

●

●

●
●
●●

●
●
●●
●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●
●
●

●

●
●

●●

●

●●●

●
●●

●

●

●●

●
●
●
●
●

●

●
●
●●●
●
●
●●
●
●

●

●

●
●
●

●
●●●●●

●
●

●

●

●
●

●

●●

●

●
●
●●

●

●●
●

●
●

●●●●
●

●

●●●
●
●

●

●
●

●

●

●●

●

●

●
●●●

●

●●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●

●●
●

●

●
●●●●
●

●●
●
●

●

●
●

●

●●

●●
●●●
●

●●●
●

●

●

●

●

●

●●●
●

●

●
●

●

●●
●

●●●
●
●●●

●

●
●

●●

●

●

●
●

●

●

●●

●

●●●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●●

●

●

●

●
●●
●

●

●

●
●●

●
●
●●●
●
●

●

●●●
●
●●
●●

●

●●

●●

●
●●

●
●●
●●

●

●

●

●●●

●

●

●

●●
●●

●
●

●

●●●

●
●●●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●
●●

●

●

●

●●
●
●

●

●

●
●●

●
●
●
●

●

●

●

●

●

●●●●
●

●

●
●
●
●●

●

●●
●

●
●
●
●●
●

●
●●
●●●●●
●●●●●
●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●●
●
●●
●

●
●
●
●●
●

●

●●●●●●●●●
●●●
●
●●●●

●
●●

●
●
●

●

●

●●
●
●
●
●●●
●●●
●

●

●●
●
●●

●●
●●

●●
●

●

●
●

●
●
●●●●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●●●

●

●

●●
●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●

●●●

●●
●

●

●

●

●

●

●
●

●

●●●●●●●
●●
●
●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●
●
●●●
●

●

●
●

●

●

●

●
●
●

●

●
●●

●

●●●●●●

●

●
●●

●●●

●

●●
●●●

●

●

●
●
●●
●
●●●●

●

●●●
●
●

●

●

●

●

●

●
●

●●●
●●
●
●
●
●●
●

●●
●

●

●

●

●

●

●
●

●
●
●
●
●

●
●●●●
●
●

●

●●

●
●●●

●

●●

●

●●

●

●
●

●
●

●●
●
●●●●●●●●
●

●

●
●

●●

●

●

●

●
●●

●

●

●

●●●●

●
●●●●●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●
●

●

●

●

●
●●●●

●

●

●
●

●

●●
●
●

●
●
●
●●
●
●●
●●●
●

●

●
●

●

●

●

●●
●

●●●
●

●

●●
●●

●
●
●

●

●
●
●●
●
●

●

●

●
●

●
●

●
●

●

●
●
●●●
●●●●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●
●

●

●

●●●

●

●

●●

●●

●

●

●
●●

●
●
●
●

●

●●
●
●

●

●
●●

●●

●

●

●

●●
●●
●
●●

●
●
●●●
●●
●

●

●
●

●
●●●

●
●
●●
●
●

●●

●

●

●
●●●
●
●●
●

●
●

●

●

●

●

●●

●

●

●
●●

●
●
●
●●●●●●
●
●●●
●

●

●

●
●

●

●

●
●

●●●

●

●●

●
●●
●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●●●
●

●

●
●

●
●●●●●

●

●

●

●
●

●●●
●●●

●●●

●

●
●●
●●
●●●
●●

●

●
●●

●

●

●
●
●
●

●

●

●

●●●●

●
●
●●●
●
●

●

●●

●
●

●●
●●

●

●●

●

●●●●●
●●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●●
●

●●●

●
●

●

●

●●
●

●

●

●

●

●

●
●
●

●
●●
●

●
●
●

●

●

●●
●
●●

●

●

●

●

●●●●
●
●
●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●
●

●●●●●●
●
●
●●●●●
●

●

●

●

●

●

●

●

●

●●

●●
●●●●●●●
●●
●
●
●

●

●

●
●

●

●
●●

●●●
●
●●●
●●●●
●●

●

●●
●

●

●

●

●

●

●

●
●
●●●●
●
●●●●
●

●

●●

●
●●
●
●

●

●

●
●

●●
●●●●●●●●

●

●●

●

●

●

●●●
●●
●

●
●

●

●●●●●●

●
●●●
●●
●
●
●●●

●

●●●
●
●

●●●●
●
●●
●

●●
●
●●
●●

●

●
●

●

●

●
●

●

●

●

●●

●●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●
●
●●●
●●

●

●●
●

●

●

●

●

●●

●

●●●
●
●
●
●●
●●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●
●●●●

●●

●

●●

●

●●
●

●

●●

●

●

●

●●

●●
●●●●●
●

●

●

●

●
●●

●●
●

●

●

●
●
●●●
●●●●
●

●●●●●

●

●●●

●●

●
●
●●●●●●●●
●

●●
●

●

●
●●

●
●

●●

●
●
●●●●
●●●●●●●●
●

●

●

●

●

●

●
●

●

●

●
●●
●
●●●●●
●●●
●●●
●●●

●
●●●
●

●
●●
●●
●●●●
●●●
●

●
●●
●

●

●

●
●

●

●

●
●

●

●●●
●

●
●
●●●●●
●●●●

●●

●

●
●

●

●

●

●

●
●

●
●●
●

●●●●
●
●
●●●
●

●

●

●●●

●
●
●
●

●
●●●
●●●●
●
●
●●

●

●

●
●●●●●

●

●
●●

●
●●●●●●
●
●

●
●

●●●

●

●

●

●

●
●
●

●●

●
●

●
●
●
●●●●
●
●
●

●

●
●

●
●●
●

●

●

●

●●
●

●●

●●
●
●
●

●●●

●

●

●
●
●

●●●

●●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●

●

●●

●●
●

●

●

●
●
●
●
●

●●●
●●●

●●

●
●

●

●

●

●●

●
●●
●
●

●

●

●
●●
●
●
●

●

●

●
●●
●

●●
●●
●
●
●

●
●
●

●

●
●●●●●
●

●

●
●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●●●
●●●●
●
●
●
●●●●
●

●

●●

●

●
●●●
●

●

●●●●●●
●
●●●

●

●

●
●

●
●●●●

●

●
●●●●
●●

●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●●●●●●●●●●
●●

●
●

●

●

●

●

●●●
●●

●

●
●●

●
●

●
●
●●●
●●
●●

●

●

●
●
●●
●●

●
●●●●
●●●

●

●
●●
●

●

●●
●●

●●

●

●●●
●●●

●

●●
●
●●
●

●

●

●●

●

●

●●

●

●
●

●

●●
●
●●●
●

●

●●●●

●

●
●●

●

●

●

●

●

●
●●

●

●
●
●●●
●
●
●●●

●

●●
●
●

●
●

●

●

●●●

●
●●●●●
●
●●●●●
●

●

●

●

●

●

●●
●

●
●

●●

●

●

●●●
●●●●
●
●
●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●●●●●
●●

●

●

●

●

●

●●
●

●

●
●●●●
●
●
●
●
●
●●
●●●

●

●
●
●

●●●

●

●●
●

●
●●
●●
●●●

●●

●
●●

●

●

●
●

●

●

●

●

●
●
●●●
●
●●●●
●

●●

●

●

●
●●

●

●

●
●
●

●
●●

●
●

●
●●●
●
●●
●
●
●●

●

●
●
●●●
●

●

●
●

●●

●●
●●
●●

●

●
●
●●

●

●

●●
●
●

●

●
●●●●
●●●●●●●●
●
●
●
●●
●

●●
●
●●
●●
●
●
●
●

●
●

●
●
●
●
●
●●
●●
●

●

●

●

●

●

●
●

●

●●
●

●●
●●●●

●
●●●

●
●
●

●
●●●●

●

●

●

●
●●●

●
●●●●●●●●
●
●

●●

●
●
●

●
●

●●

●
●

●●●
●●
●
●
●●●●
●

●
●
●

●
●

●

●

●●

●

●●
●●●

●

●
●●●

●

●

●
●

●

●

●

●

●

●●
●●

●

●●●●●
●
●
●●

●●
●
●

●

●

●
●●●
●

●

●

●

●●
●●●●●
●●●
●●●
●
●

●

●

●●

●

●

●

●●

●●
●●
●●
●
●

●

●
●●
●

●
●
●

●

●●

●●

●

●

●

●
●●●●
●
●
●
●●●

●

●●

●

●
●
●

●

●

●
●
●●
●

●

●●●●●
●●
●●
●
●●

●

●
●

●

●

●
●

●

●

●

●●●●●●●

●
●●●●●
●
●●

●●

●

●

●
●

●

●

●
●
●
●●●
●

●

●●●

●

●●
●

●

●

●

●

●

●●
●

●●●●
●●
●●●●●
●
●

●

●
●

●
●
●
●

●

●

●

●

●●●●
●●
●●
●●
●●

●
●●

●●

●

●

●●

●●●●●●●●●●●●●

●

●

●

●

●●
●●

●

●

●

●●
●
●

●
●●●
●

●
●

●●
●
●●●●
●
●
●

●
●

●●

●
●●

●

●●

●
●
●●●●

●
●

●

●

●●●●●●

●

●
●
●
●●●●●●●●●
●

●

●

●

●

●●
●

●

●

●

●

●●
●
●
●
●●●●●
●●
●●

●

●
●●

●

●
●●●
●

●
●
●●●
●
●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●
●●
●
●●
●
●
●
●
●

●
●
●

●

●
●

●●●
●
●●●
●
●●
●●

●

●

●

●●●
●
●

●●
●
●●●

●
●●
●
●●●●●
●
●

●

●
●

●

●●
●
●●●

●
●

●

●
●●
●
●●
●●●●●●●
●
●●
●●

●

●

●
●

●

●●

●

●
●●●●
●

●
●

●
●●
●

●

●
●

●
●

●

●

●

●

●●

●●
●●
●●●
●●
●●●

●

●
●●

●●

●●
●

●

●●●
●
●
●●
●●
●
●●●
●
●

●

●
●

●
●

●●
●
●

●
●

●

●
●●●●
●●●●●
●
●

●

●
●
●●
●

●

●
●
●

●
●●
●
●
●
●●●
●
●

●

●●●

●
●●
●
●
●
●●
●●
●●●●●
●
●
●
●●

●
●
●

●

●

●

●

●
●

●

●
●●
●●●●●●●●
●
●●●

●

●

●●

●

●

●

●
●

●
●●

●

●

●●●
●●●●●●●
●

●

●●
●

●

●

●●●
●

●
●
●
●●●
●
●●●
●
●
●
●
●

●

●
●

●
●●
●
●
●

●

●
●●
●●●●
●
●

●

●

●

●

●
●
●

●

●

●

●
●
●
●

●●●●●
●
●●●●
●

●

●
●●

●

●
●
●●
●●

●●●●●●
●●●
●●●●
●

●

●
●

●

●●

●

●

●

●●

●

●●
●

●
●●●
●●
●●
●

●
●

●

●

●
●

●

●
●
●●●●
●●●
●

●●
●
●

●

●

●

●●

●

●

●●

●

●
●●
●

●

●

●●●
●●
●
●
●
●●●

●
●

●
●

●
●
●

●

●
●
●●●●●
●●
●

●●
●
●

●

●
●
●●

●
●
●
●●●
●
●

●

●●

●

●
●

●●

●

●●●

●●●
●
●
●
●

●

●

●

●●

●●●●
●
●
●

●
●●
●●
●
●

●●●

●●

●

●

●

●●●●●
●●●
●●
●●●

●●●

●
●

●

●

●

●
●
●●

●

●●
●
●●
●

●

●

●
●
●●
●

●
●
●

●

●
●●●

●

●●●
●
●

●
●
●

●

●

●●
●
●
●●
●

●
●

●

●

●
●

●●
●

●
●
●
●

●

●●
●
●●

●●
●
●

●

●

●

●

●

●

●
●

●
●
●
●

●
●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●●
●
●
●●●
●●

●

●

●●

●
●

●

●

●

●●
●●●●●
●
●●●
●
●●●●

●

●
●
●
●

●

●

●

●
●
●●●●●●
●●

●
●●●

●

●
●●

●●
●

●

●●
●

●●●
●
●

●
●●
●
●●
●

●

●

●
●

●

●
●

●

●●
●

●
●
●

●
●
●
●●
●
●●
●●

●
●●

●
●

●
●●
●●●●●●●●●
●●●●●●●●

●

●

●

●●●●
●●

●
●●
●
●
●●●

●●
●●
●●
●

●

●

●

●

●●
●
●

●
●
●

●
●●●●
●●●
●

●●

●●
●
●
●

●

●

●●

●
●

●●
●

●●

●
●
●
●●●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●●●●
●●●
●
●
●

●

●
●

●

●
●

●

●

●
●
●

●
●

●●
●
●
●●
●

●●●●
●

●

●

●●
●●

●●

●
●
●
●

●
●

●
●

●

●
●

●

●
●
●
●

●

●●●

●

●
●

●●
●

●
●
●●●

●

●●
●
●

●

●●

●

●
●

●

●

●

●

●●●
●
●
●
●●●●●
●●
●

●

●
●
●
●
●

●●

●

●

●
●
●●
●●●●●●●●
●
●

●
●

●●

●

●●●

●

●●

●

●
●

●

●

●
●●
●●●●●

●
●●

●

●
●

●

●

●
●●●
●●

●●

●

●

●●●
●

●
●

●

●
●

●
●

●
●

●

●●
●
●

●●
●

●●●●●
●●
●

●
●
●●●

●●

●

●●

●
●
●
●
●

●●
●
●●●●
●

●●●

●
●●
●

●

●●
●

●

●

●●
●
●●
●
●●●●●
●
●

●
●●
●

●

●

●
●
●

●
●●
●●●
●
●
●
●
●●●
●

●

●

●
●

●

●

●

●●

●●●●●
●●●●●●●
●●●●
●●

●

●

●●
●

●
●
●●
●●●●

●

●
●
●
●
●

●
●●●●

●

●

●

●●●
●

●

●

●

●●●
●
●●●

●
●

●
●

●

●

●●●

●

●

●●
●

●

●●●
●
●●●
●●●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●●

●●

●
●
●
●
●
●●
●

●
●
●

●

●●●

●

●●
●

●

●

●
●●
●
●●●
●
●

●

●

●

●
●
●●

●

●

●
●●

●

●●●

●
●
●
●
●●

●
●
●●
●

●

●

●

●

●

●●●
●●●●●●●●●

●

●
●

●●

●
●

●

●

●

●
●
●●
●●

●

●

●

●●
●●
●●

●

●

●

●

●

●
●

●

●●
●●●

●

●●
●

●

●
●

●

●

●
●
●●

●●
●

●

●

Hourly USD/EUR log−returns (basis points), 2 January 2017 − 31 December 2018:

Hourly interval

B
as

is
 p

oi
nt

2 Jan 2017 3 Jul 2017 2 Jan 2018 2 Jul 2018 31 Dec 2018

−
10

0
−

50
0

50
10

0
15

0

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Intraday hourly USD/EUR return volatility

Hourly interval

1 6 12 18 24

0
50

10
0

15
0

20
0

00 CET − 06 CET 06 CET − 12 CET 12 CET − 18 CET 18 CET − 24 CET

Figure 2: Hourly log-returns in basis points of the USD/EUR exchange rate (left) and
estimates (assuming constancy over t) of its intraday hourly volatility (right), 2 January
2017 – 31 December 2018 (see Section 5.3). Datasource: Forexite
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Table 1: Comparison of the Ordinary QMLE and the Two-step QMLE (see Section 4.1)

g-DGP T m(ω̂) se(ω̂) ase(ω̂) m(α̂) se(α̂) ase(α̂) m(β̂) se(β̂) ase(β̂)

1: Ordinary QMLE:
10000 0.0017 0.0135 0.0132 0.0002 0.0087 0.0088 −0.0019 0.0190 0.0190
20000 0.0009 0.0094 0.0094 0.0002 0.0061 0.0062 −0.0011 0.0133 0.0134
40000 0.0003 0.0068 0.0066 0.0000 0.0045 0.0044 −0.0002 0.0097 0.0095
80000 0.0002 0.0047 0.0047 −0.0001 0.0031 0.0031 −0.0001 0.0068 0.0067

Two-step QMLE:
10000 0.0014 0.0136 – −0.0001 0.0087 – −0.0016 0.0190 –
20000 0.0087 0.0095 – −0.0003 0.0063 – −0.0005 0.0136 –
40000 0.0004 0.0068 – 0.0000 0.0046 – −0.0005 0.0098 –
80000 0.0002 0.0048 – −0.0001 0.0032 – −0.0001 0.0069 –

Relative efficiency (two-step vs. ordinary):

T se2(ω̂)
se1(ω̂)

se2(α̂)
se1(α̂)

se2(β̂)

se1(β̂)

10000 1.0044 1.0021 0.9997
20000 1.0103 1.0377 1.0196
40000 1.0007 1.0127 1.0129
80000 1.0107 1.0377 1.0206

2: Two-step QMLE:

T m(δ̂0) m(δ̂1) m(γ̂) m(ĉ) m(α̂) se(α̂) m(β̂) se(β̂)
10000 −0.0050 0.0269 0.6592 0.0031 0.0000 0.0087 −0.0031 0.0192
20000 −0.0039 0.0170 0.2612 0.0011 0.0000 0.0059 −0.0017 0.0135
40000 −0.0032 0.0156 0.0720 0.0013 0.0001 0.0042 −0.0009 0.0092
80000 −0.0018 0.0062 0.0337 0.0002 0.0001 0.0032 −0.0005 0.0068

DGP: ϵt = gtϕt, ϕt =
√
htηt, ηt

iid∼ N(0, 1), ht = 0.1 + 0.1ϕ2
t−1 + 0.8ht−1. g-DGP 1:

gt = 1 for all t. g-DGP 2: gt = 0.5 + 1.5
(
1 + exp(−10(t/T − 0.5)

)−1
. T , sample size.

m(x̂), average bias of estimate x̂ across replications (no. of replications = 1000). se(x̂),
sample standard deviation of estimate x̂ across replications. ase(x̂), asymptotic standard
deviation of Ordinary estimate x̂. se1(·) and se2(·), the standard errors of the Ordinary
and Two-step QMLEs, respectively. All computations in R (R Core Team, 2021). The
Ordinary estimator is estimated with the garchx() function of the CRAN package garchx
(Sucarrat, 2021a). The asymptotic standard errors are obtained with the garchxAvar()

function of the same package. The Two-step QMLE is implemented with own code.
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Table 2: Comparison of the Two-step QMLE and the Iterative QMLE of Amado and
Teräsvirta (2013), see Section 5.1

T m(δ̂0) se(δ̂0) m(δ̂1) se(δ̂1) m(γ̂) se(γ̂) m(ĉ) se(ĉ)

gt: Two-step QMLE (step 1):

2000 −0.0306 0.1421 0.1928 0.7559 6.8617 19.326 0.0197 0.1180
5000 −0.0146 0.0933 0.0848 0.4203 1.6698 6.8159 0.0099 0.0686
10000 −0.0050 0.0569 0.0269 0.1961 0.6592 2.9829 0.0031 0.0339
20000 −0.0039 0.0386 0.0170 0.1260 0.2612 1.8592 0.0011 0.0237
40000 −0.0032 0.0262 0.0156 0.0898 0.0720 1.3271 0.0013 0.0167
80000 −0.0018 0.0171 0.0062 0.0572 0.0337 0.8697 0.0002 0.0111

Iterative QMLE:
2000 −0.0380 0.1548 7.9542 145.1647 10.4640 40.8952 0.0240 0.1189
5000 −0.0206 0.1086 0.1939 2.4315 1.3270 10.5000 0.0089 0.0570
10000 −0.0088 0.0718 0.0248 0.2045 0.4501 2.6239 0.0030 0.0295
20000 −0.0055 0.0490 0.0127 0.1459 0.1787 1.6676 0.0015 0.0223
40000 −0.0037 0.0306 0.0106 0.0863 0.0476 1.1624 0.0010 0.0144
80000 −0.0018 0.0171 0.0044 0.0510 0.0177 0.7819 0.0003 0.0097

T m(ω̂) se(ω̂) m(α̂) se(α̂) m(β̂) se(β̂)

ht: Two-step QMLE (step 2):

2000 – – −0.0006 0.0197 −0.0180 0.0525
5000 – – −0.0003 0.0121 −0.0057 0.0271
10000 – – 0.0000 0.0087 −0.0031 0.0192
20000 – – 0.0000 0.0059 −0.0017 0.0135
40000 – – 0.0001 0.0042 −0.0009 0.0092
80000 – – 0.0001 0.0032 −0.0005 0.0068

Iterative QMLE:
2000 0.0189 0.0587 0.0000 0.0200 −0.0195 0.0524
5000 0.0069 0.0231 0.0000 0.0122 −0.0064 0.0271
10000 0.0037 0.0144 0.0001 0.0087 −0.0034 0.0192
20000 0.0022 0.0103 0.0001 0.0059 −0.0019 0.0135
40000 0.0011 0.0069 0.0001 0.0042 −0.0010 0.0092
80000 0.0006 0.0049 0.0001 0.0032 −0.0006 0.0068

DGP: ϵt =
√
gtϕt, ϕt =

√
htηt, ηt

iid∼ N(0, 1), ht = 0.1 + 0.1ϕ2
t−1 + 0.8ht−1,

gt = 0.5 + 1.5
(
1 + exp(−10(t/T − 0.5)

)−1
. T , sample size. m(x̂), average bias of

estimate x̂ across replications (no. of replications = 1000). se(x̂), sample standard devi-
ation of estimate x̂ across replications. All computations in R (R Core Team, 2021). The
Two-step QMLE is implemented with own code. The Iterative QMLE is implemented
with the tvgarch() function of the CRAN package tvgarch (Campos-Martins and
Sucarrat, 2021).
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Table 3: Spline estimates of intraday hourly volatility (see Section 5.3)

m δ̂m,0
(s.e.)

δ̂m,1
(s.e.)

δ̂m,2
(s.e.)

δ̂m,3
(s.e.)

δ̂m,4
(s.e.)

Tm χ2(4)
[p-value]

1 5.299
(0.7500)

−15.810
(13.4496)

21.374
(35.3855)

−6.012
(42.0653)

53.597
(52.1279)

515 21.853
[0.0004]

2 3.775
(0.2522)

1.133
(5.5681)

−11.494
(17.2062)

9.289
(27.5929)

53.769
(44.4827)

516 13.659
[0.0085]

3 3.643
(0.1799)

2.215
(5.6773)

−8.954
(18.0857)

18.192
(29.0796)

−22.852
(51.8098)

516 0.518
[0.9717]

4 3.881
(0.2042)

−1.513
(5.8472)

−0.526
(17.8325)

10.394
(24.7791)

−31.197
(36.2248)

516 3.739
[0.4425]

5 3.374
(0.2480)

−3.385
(5.6155)

17.916
(25.1050)

−22.709
(50.8935)

−58.255
(65.4081)

516 11.252
[0.0239]

6 2.735
(0.1639)

4.456
(4.8265)

−13.627
(14.8996)

17.628
(21.9421)

−6.619
(35.6283)

516 2.678
[0.6131]

7 2.828
(0.1880)

2.119
(4.8305)

2.422
(14.8866)

−18.812
(23.0809)

24.475
(41.8878)

516 4.935
[0.2940]

8 3.857
(0.1761)

0.895
(4.7521)

−5.108
(15.6562)

27.629
(27.3992)

−85.692
(50.4148)

515 4.604
[0.3303]

9 4.521
(0.1046)

1.519
(3.3635)

1.150
(11.0441)

−10.082
(17.3547)

−6.229
(26.6335)

516 9.899
[0.0422]

10 5.017
(0.1083)

−4.345
(4.1078)

20.107
(14.1018)

−44.509
(23.5979)

86.918
(39.2136)

517 5.068
[0.2804]

11 4.639
(0.1883)

−6.359
(4.2830)

31.118
(13.0861)

−61.819
(19.7582)

82.749
(32.9971)

517 12.851
[0.0120]

12 4.270
(0.1340)

3.207
(6.0620)

−9.070
(19.7664)

7.739
(27.8529)

8.046
(31.5354)

517 1.285
[0.8638]

13 4.557
(0.2465)

−1.464
(5.8333)

4.095
(16.2241)

−6.101
(20.1854)

−3.786
(27.0236)

517 6.345
[0.1748]

14 4.543
(0.1308)

−2.035
(5.9661)

19.024
(20.3574)

−47.267
(30.2696)

52.408
(33.8309)

517 6.326
[0.1761]

15 5.459
(0.1745)

−2.838
(6.1909)

10.719
(19.1024)

−19.411
(26.1782)

11.935
(39.5786)

517 4.168
[0.3838]

16 5.119
(0.1370)

2.594
(3.5312)

−9.415
(11.2713)

11.557
(18.2850)

10.993
(29.4824)

517 4.806
[0.3078]

17 5.409
(0.2083)

−4.002
(6.1470)

10.676
(18.9849)

−19.079
(26.0639)

51.860
(33.0372)

517 6.545
[0.1620]

18 4.525
(0.1408)

2.129
(4.2691)

−5.967
(14.9249)

8.191
(25.3200)

−22.307
(35.8577)

517 1.757
[0.7804]

19 4.538
(0.2072)

−8.461
(4.6763)

28.788
(14.3697)

−45.468
(22.1037)

89.723
(37.5709)

517 11.391
[0.0225]

20 4.812
(0.2824)

−12.499
(6.1907)

42.377
(18.0686)

−66.247
(25.3002)

78.278
(37.1904)

515 7.317
[0.1201]

21 4.762
(0.2543)

12.607
(8.3223)

−51.998
(27.7935)

68.146
(41.7346)

13.428
(60.2769)

516 13.748
[0.0081]

22 4.247
(0.2998)

−9.138
(6.8886)

26.477
(22.1289)

−37.022
(36.0346)

50.927
(50.1777)

516 3.522
[0.4746]

23 3.192
(0.1530)

−0.677
(6.5806)

−1.918
(21.7796)

17.689
(34.8812)

−34.275
(58.9946)

412 3.196
[0.5257]

24 2.203
(0.1849)

20.118
(4.9578)

−68.402
(15.6431)

80.915
(24.5484)

−18.442
(37.1556)

413 34.318
[0.0000]

The estimated model is ln gm,t = δm,0 +
∑4

l=1 δm,l(t/T − cl)
2I(t/T ≥ cl) with

(c1, c2, c3, c4)
′ = (0.2, 0.4, 0.6, 0.8). m, intraday period/hour. s.e., standard error of

estimate. T , number of observations. χ2(4), the test statistic of a Wald-test with
H0 : δm,1 = · · · = δm,4 = 0 (p-value in square brackets).
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A Proofs of main results

A.1 Proof of Theorem 1

By Theorem 5.7 in van der Vaart (1998) it suffices to show (i) uniform convergence in
probability of Lm,T to Lm over Θm and (ii) that the maximiser of Lm (over Θm) is well-
separated.

(i) Uniform convergence in probability
Let L̄m,T (θm) :=

1
T

∑T
t=1E

[
lm,t,T (θm, ϵ

2
m,t,T )

]
. We first show that Lm,T (θm)−L̄m,T (θm)

converges to zero in probability, pointwise in θm ∈ Θm. Let Xt,T := lm,t,T (θm, ϵ
2
m,t,T ) −

E
[
lm,t,T (θm, ϵ

2
m,t,T )

]
and let Ft,T := σ({Xi,T : 1 ≤ i ≤ t}). Combining Assumptions 2

and 4 yields that sup1≤t≤T,T∈NE|Xt,T |p < ∞ for some p > 1. Hence {Xt,T : 1 ≤ t ≤
T, T ∈ N} is uniformly integrable and, given Assumption 3, {Xt,T/T,Ft,T : 1 ≤ t ≤
T, T ∈ N} forms a L1-mixingale array with respect to the constants ct,T = 1/T by
Theorems 14.1 & 14.2 in Davidson (1994). Therefore by Theorem 19.11 in Davidson
(1994), E

∣∣Lm,T (θm)− L̄m,T (θm)
∣∣ → 0 (for any fixed θm ∈ Θm), implying the required

convergence in probability.
Next observe that for θm,θ

′
m ∈ Θ∗

m, by the mean value theorem there is a c ∈ [0, 1]
such that for θ†

m := θm(1− c) + cθ′
m ∈ Θ∗

m,∣∣lm,t,T (θm, ϵ
2
m,t,T )− lm,t,T (θ

′
m, ϵ

2
m,t,T )

∣∣
≤ ∥θm − θ′m∥

[∥∥ġm,t,T (θ
†
m)
∥∥

|gm,t,T (θ
†
m)|

+
ϵ2m,t,T

∥∥ġm,t,T (θ
†
m)
∥∥

g2m,t,T (θ
†
m)

]
≤ C∥θm − θ′

m∥ × (1 + ϵ2m,t,T ),

(27)

where C is an absolute constant and the last line follows from Assumption 2. By (27)
and Jensen’s inequality

|L̄m,T (θm)− L̄m,T (θ
′
m)| ≤

1

T

T∑
t=1

∣∣E [lm,t,T (θm, ϵ
2
m,t,T )− lm,t,T (θ

′
m, ϵ

2
m,t,T )

]∣∣
≤ C∥θm − θ′

m∥
1

T

T∑
t=1

E
(
1 + ϵ2m,t,T

)
≤ L∥θm − θ′

m∥,

where the last line follows from sup1≤t≤T, T∈NEϵ
2
m,t,T < ∞ which is ensured by Assump-

tions 2 and 4. Hence {L̄m,T : T ∈ N} is uniformly equicontinuous (on Θ∗
m).

We next establish a Lipschitz–type bound on Lm,T . By (27)

|Lm,T (θm)− Lm,T (θ
′
m)| ≤

1

T

T∑
t=1

∣∣lm,t,T (θm, ϵ
2
m,t,T )− lm,t,(θ

′
m, ϵ

2
m,t,T )

∣∣
≤ C∥θm − θ′

m∥ ×
1

T

T∑
t=1

1 + ϵ2m,t,T .

Assumptions 2 and 4 together ensure that sup1≤t≤T, T∈NEϵ
2
m,t,T < ∞ and so 1

T

∑T
t=1 1 +

ϵ2m,t,T = OP (1) by Markov’s inequality. This, along with the preceding paragraph, verifies
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Assumption SE-1 in Andrews (1992) and hence {Lm,T − L̄m,T : T ∈ N} is stochastically
equicontinuous by Lemma 1 of Andrews (1992). In view of Assumption 1 and the pointwise
convergence in probability previously established, Theorem 1 in Andrews (1992) therefore
yields that

sup
θm∈Θm

|Lm,T (θm)− L̄m,T (θm)|
P−→ 0.

By Assumption 5, L̄m,T → Lm pointwise on Θm. Since {L̄m,T : T ∈ N} is equicontinuous
on Θm, this convergence is in fact uniform on Θm:

sup
θm∈Θm

|L̄m,T (θm)− Lm(θm)| → 0.

Combination of the last two displays yields (i).
(ii) Well-separated point of maximum
By Assumption 5, Lm has a unique maximiser. Since Θm is compact by Assumption

1, the same is true of {θ ∈ Θm : ∥θ − θ⋆
m∥ ≥ ε} for any ε > 0. It is therefore sufficient

to note that Lm is continuous on Θm, which follows by the uniform limit theorem (e.g.
Theorem 7.12 in Rudin (1976)) since each L̄m,T is continuous and L̄m,T → Lm uniformly
on Θm.

A.2 Proof of Theorem 2

We verify the conditions in Theorem 3.1 of Newey and McFadden (1994).10 θ̂m minimises
Lm,T (θm) over Θm by definition and is consistent for θ⋆

m by Theorem 1. Condition (i)
holds by Assumption 6. Condition (ii) holds by Assumption 8, the chain rule and the
definition of lm,t,T . For condition (iii) we show that

Sm,T (θ
⋆
m) = T−1/2

T∑
t=1

l̇m,t,T (θ
⋆
m, ϵ

2
m,t,T )⇝ N (0,B⋆

m). (28)

For this, firstly note that

l̇m,t,T (θ
⋆
m, ϵ

2
m,t,T ) =

ġm,t,T (θ
⋆
m)

gm,t,T (θ⋆
m)

−
ϵ2m,t,T ġm,t,T (θ

⋆
m)

g2m,t,T (θ
⋆
m)

=
ġm,t,T (θ

⋆
m)

gm,t,T (θ⋆
m)

(
1− ϕ2

m,t,T

)
, (29)

and hence by Assumption 4,

E
[
l̇m,t,T (θ

⋆
m, ϵ

2
m,t,T )

]
=

ġm,t,T (θ
⋆
m)

gm,t,T (θ⋆
m)
E
[
1− ϕ2

m,t,T

]
= 0.

By Assumption 2

∥l̇m,t,T (θ
⋆
m, ϵ

2
m,t,T )∥ =

∥∥∥∥∥∥ġm,t,T (θ
⋆
m)∥

|gm,t,T (θ⋆
m)|

+
ϵ2m,t,T ∥ġm,t,T (θ

⋆
m)∥

g2m,t,T (θ
⋆
m)

∥∥∥∥∥ ≤ C(1 + ϵ2m,t,T ). (30)

10Theorem 3.1 in Newey and McFadden (1994) applies to maximisers; our estimator is a minimiser.
Multipliying by −1 in the appropriate places allows the application of this result under the conditions
shown.
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For notational convenience we drop the arguments of l̇m,t,T , gm,t,T and ġm,t,T for the
remainder of this part of the proof. Let Zt,T := T−1/2λ′l̇m,t,T for ∥λ∥2 = 1. σT :=

∥
∑T

t=1 Zt,T∥L2 and Xt,T = Zt,T/σT .
11 Let Fm,t,T := σ(ϵ2m,1,T , . . . , ϵ

2
m,t,T ). We will verify

the conditions of Corollary 2 in de Jong (1997). (a) follows as Xt,T is a mean-zero random
variable with ∥

∑
t,T Xt,T∥L2 = 1 and each Xt,T is Fm,t,T–measurable. For (b) set ct,T :=

max{∥Zt,T∥L2 , 1}/σT . By the moment bounds in Assumption 7 and (30), one concludes
that

sup
1≤t≤T,T∈N

∥Xt,T/ct,T∥Lrm
≤ sup

1≤t≤T,T∈N
σT∥Xt,T∥Lrm

= sup
1≤t≤T,T∈N

∥Zt,T∥Lrm
<∞, (31)

For (c), since each Xt,T is Fm,t,T–measurable (and in L2), it is trivially L2 – NED (of any
size) on (ϵ2m,t,T )1≤t≤T,T∈N and by Assumption 9 this latter array is α-mixing of size −ρm,
with ρm := rm/(rm − 2).12 Finally, we note that by the moment bounds in Assumption 4
and (30)

Tc2t,T ≤ 1

σ2
T

max{∥l̇m,t,T∥2L2
, 1} ≲ 1

σ2
T

.

By Assumption 10,

σ2
T =

∥∥∥∥∥
T∑
t=1

Zt,T

∥∥∥∥∥
2

L2

= λ′Bm,Tλ→ λ′B⋆
mλ > 0. (32)

Combination of the preceding displays permits the conclusion that c2t,T = O(T−1), es-
tablishing the final condition of Corollary 2 of de Jong (1997) with β = γ = 0. There-
fore,

∑T
t=1Xt,T ⇝ N (0, 1). In conjunction with (32) and Slutsky’s Theorem this implies∑T

t=1 Zt,T ⇝ N (0, λ′B⋆
mλ). Hence (28) holds by the Cramér – Wold Theorem.

For condition (iv) we will first show the pointwise convergence of Âm,T −Am,T to zero
on Vm. By Jensen’s inequality and part iii of Assumption 8,

E
∥∥∥l̈m,t,T (θm, ϵ

2
m,t,T )

∥∥∥ ≤ φm,t,T (θm)E|υm,t,T | ≤ C1E|υm,t,T |

for some C1 ∈ (0,∞) and where sup1≤t≤T,T∈NEυ
2
m,t,T <∞. Hence for δ ∈ (0, 1],

E
∥∥∥l̈m,t,T (θm, ϵ

2
m,t,T )

∥∥∥1+δ

≤ C, (33)

for some C ∈ (0,∞), implying that (l̈m,t,T (θm, ϵ
2
m,t,T ))1≤t≤T,T∈N is uniformly integrable.

The same is therefore true of (Xt,T )1≤t≤T,T∈N forXt,T := l̈m,t,T (θm, ϵ
2
m,t,T )−E

[
l̈m,t,T (θm, ϵ

2
m,t,T )

]
.

Equation (33) along with Assumption 3 and Theorems 14.1 and 14.2 in Davidson (1994)
imply that (Xt,T/T )1≤t≤T,T∈N forms a L1 – mixingale array with respect to the constants

11That σT is finite follows by Assumption 7; that it is (at least eventually) non-zero follows from (32)
below.

12The constants dt,T in the definition of NED (cf. e.g. Definition 17.2 in Davidson (1994) or Definition
2 in de Jong (1997)) can be set to ct,T to ensure the boundedness condition holds, as the νm sequence
can be taken to equal zero for each m.
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ct,T = 1/T .13 Therefore

Âm,T (θm)−Am,T (θm) =
1

T

T∑
t=1

l̈m,t,T (θm, ϵ
2
m,t,T )− E

[
l̈m,t,T (θm, ϵ

2
m,t,T )

]
P−→ 0 (34)

by Theorem 19.11 in Davidson (1994). By Assumption 8 iv, for each pair of indices (k, j)
and θm,θ

′
m ∈ Vm,

|Am,T,k,j(θm)−Am,T,k,j(θ
′
m)| =

∣∣∣∣∣ 1T
T∑
t=1

e′kE
[
l̈m,t,T (θm, ϵ

2
m,t,T )− l̈m,t,T (θ

′
m, ϵ

2
m,t,T )

]
ej

∣∣∣∣∣
≤ 1

T

T∑
t=1

E
∥∥∥l̈m,t,T (θm, ϵ

2
m,t,T )− l̈m,t,T (θ

′
m, ϵ

2
m,t,T )

∥∥∥
≤ 1

T

T∑
t=1

E|ψm,t,T |∥θm − θ′
m∥

≤ C∥θm − θ′
m∥,

for some constant C ∈ (0,∞). This implies that for each (k, j) pair, {Am,T,k,j : T ∈ N}
is uniformly equicontinuous on Vm. Similarly,

|Âm,T,k,j(θm)− Âm,T,k,j(θ
′
m)| ≤

[
1

T

T∑
t=1

ψm,t,T

]
∥θm − θ′

m∥.

with 1
T

∑T
t=1 ψm,t,T = OP (1). In combination with the uniform equicontinuity of {Am,T,k,j :

T ∈ N}, this verifies Assumption SE-1 in Andrews (1992). Hence, for each pair of indices
(k, j), {Âm,T,k,j −Am,T,k,j : T ∈ N} is stochastically equicontinuous by Lemma 1 of An-
drews (1992). In view of (34) and since Vm is totally bounded as a subset of a compact
metric space, Theorem 1 in Andrews (1992) applied to each pair (k, j) therefore yields
that

sup
θm∈Vm

∥Âm,T (θm)−Am,T (θm)∥
P−→ 0. (35)

By Assumption 11, ∥Am,T (θm) − Am(θm)∥ → 0. Since {Am,T : T ∈ N} is uniformly
equicontinuous on Vm (as noted above), the convergence is uniform:

sup
θm∈Vm

∥Am,T (θm)−Am(θm)∥ → 0 (36)

Combining this with equation (35) demonstrates that the convergence in condition (iv)
holds. That Am is continuous at θ⋆

m follows from the uniform limit theorem.
Condition (v) holds by Assumption 11. The claimed result follows by Theorem 3.1 in

Newey and McFadden (1994).

13This choice of ct,T evidently satisfies conditions (b), (c) of Theorem 19.11 in Davidson (1994).
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A.3 Proof of Corollary 1

By Theorem 1, with probability approaching one, θ̂m ∈ Vm. Therefore,

∥Âm,T (θ̂m)−A⋆
m∥ ≤ sup

θm∈Vm

∥Âm,T (θm)−Am(θm)∥+ ∥Am(θ̂m)−Am(θ
⋆
m)∥,

with probability approaching one. By (35) and (36) in the Proof of Theorem 2,

sup
θm∈Vm

∥Âm,T (θm)−Am(θm)∥
P−→ 0.

The Proof of Theorem 2 also demonstrated that Am is continuous at θ⋆
m. Combination

of this, θ̂m
P−→ θ⋆

m and the preceding two displays proves the claim.

A.4 Proof of Proposition 1

We verify Assumptions 1 – 4 of de Jong and Davidson (2000), in order to apply their
Theorem 2.2 with

Xt,T (θm) := T−1/2l̇m,t,T (θm, ϵ
2
m,t,T ), Xt,T := Xt,T (θ

⋆
m).

Their Assumption 1 holds by our Assumption 12. For their Assumption 2, let Fm,t,T :=
σ(ϵ2m,1,T , . . . , ϵ

2
m,t,T ), dt,T := ct,T = T−1/2.14 Since each Xt,T is Fm,t,T–measurable (and in

L2), it is trivially L2 – NED (of any size) on (ϵ2m,t,T )1≤t≤T,T∈N and by Assumption 9 this
latter array is α-mixing of size −ρm, with ρm := rm/(rm − 2). Their condition (2.7) is
evidently satisfied by this choice of ct,T , whilst (2.6) holds by Assumptions 2 and 7 since
(cf. (31)) (

∥Xt,T∥Lrm
+ dt,T

)
c−1
t,T = ∥l̇m,t,T (θm, ϵ

2
m,t,T )∥Lrm

+ 1.

Their Assumption 3 holds by Assumption 13. Part (a) of their Assumption 4 is implied
by Theorem 2; part (b) of their Assumption 4 is implied by the (uniform) equicontinuity
on Vm of {Am,T : T ∈ N}, which was noted to hold in the Proof of Theorem 2. For
part (c) of their Assumption 4, we note that the rate condition in (ii) is satisfied under
Assumption 13, whilst (2.10) holds by Assumption 7 and Assumption 8 iii since for some
C ∈ (0,∞),

sup
θm∈Vm

∥∥∥∥∥
T∑
t=1

[∇θmXt,T (θm)
′] [∇θmXt,T (θm)]

∥∥∥∥∥ ≤ sup
θm∈Vm

1

T

T∑
t=1

∥∥∥l̈m,t,T (θm, ϵ
2
m,t,T )

∥∥∥2
≤ 1

T

T∑
t=1

C2υ2m,t,T

= OP (1).

Finally, their (2.8) holds as – also by Assumption 7 and Assumption 8 iii –

E sup
θm∈Vm

∥∇θmXt,T (θm)∥2 = E sup
θm∈Vm

1

T

∥∥∥l̈m,t,T (θm, ϵ
2
m,t,T )

∥∥∥2 ≤ C2

T
Eυ2m,t,T = O(T−1).

Hence the claim follows by Theorem 2.2 in de Jong and Davidson (2000).

14Cf. footnote 12.
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A.5 Proof of Theorem 3

The proof is essentially analogous to that of Theorem 2; we give it for completeness.
We verify the conditions in Theorem 3.1 of Newey and McFadden (1994).15 θ̂ minim-

ises LT (θ) over Θ by definition and is consistent for θ⋆ by Theorem 1. Condition (i) holds
by Assumption 6. Condition (ii) holds by Assumption 8, the chain rule and the definition
of lm,t,T . For condition (iii) we show that

ST (θ
⋆) = T−1/2

T∑
t=1

l̇t,T (θ
⋆, ϵ2t,T )⇝ N (0,B⋆). (37)

For this, firstly note that by equation (29) and Assumption 4, E
[
l̇t,T (θ

⋆, ϵ2t,T )
]
= 0. For

notational convenience we drop the arguments of l̇t,T for the remainder of this part of the

proof. Let Zt,T := T−1/2λ′l̇t,T for ∥λ∥2 = 1. σT := ∥
∑T

t=1 Zt,T∥L2 and Xt,T = Zt,T/σT .
16

Let Ft,T := σ(ϵ21,T , . . . , ϵ
2
t,T ). We will verify the conditions of Corollary 2 in de Jong (1997).

(a) follows as Xt,T is a mean-zero random variable with ∥
∑

t,T Xt,T∥L2 = 1 and each Xt,T

is Ft,T–measurable. For (b) set ct,T := max{∥Zt,T∥L2 , 1}/σT . By the moment bounds in
Assumption 7 and (30), one concludes that

sup
1≤t≤T,T∈N

∥Xt,T/ct,T∥Lr ≤ sup
1≤t≤T,T∈N

σT∥Xt,T∥Lr = sup
1≤t≤T,T∈N

∥Zt,T∥Lr <∞. (38)

For (c), since each Xt,T is Ft,T–measurable (and in L2), it is trivially L2 – NED (of any
size) on (ϵ2t,T )1≤t≤T,T∈N and by Assumption 14 this latter array is α-mixing of size −ρ,
with ρ := r/(r− 2).17 Finally, we note that by the moment bounds in Assumption 4 and
(30)

Tc2t,T ≤ 1

σ2
T

max{∥l̇t,T∥2L2
, 1} ≲ 1

σ2
T

.

By Assumption 15,

σ2
T =

∥∥∥∥∥
T∑
t=1

Zt,T

∥∥∥∥∥
2

L2

= λ′BTλ→ λ′B⋆λ > 0. (39)

Combination of the preceding displays permits the conclusion that c2t,T = O(T−1), es-
tablishing the final condition of Corollary 2 of de Jong (1997) with β = γ = 0. There-
fore,

∑T
t=1Xt,T ⇝ N (0, 1). In conjunction with (39) and Slutsky’s Theorem this implies∑T

t=1 Zt,T ⇝ N (0, λ′B⋆λ). Hence (37) holds by the Cramér – Wold Theorem.
For condition (iv) we note that by (35) and (36) (which can be established in the

present setting in exactly the same way as in the proof of Theorem 2) we have

sup
θm∈Vm

∥Âm,T (θm)−Am(θm)∥
P−→ 0,

15Cf. footnote 10.
16That σT is finite follows by Assumption 7; that it is (at least eventually) non-zero follows from (39)

below.
17Cf. footnote 12.
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hence (cf. (9))

sup
θ∈V

∥ÂT (θ)−A(θ)∥ P−→ 0.

Condition (v) holds by Assumption 11. The claimed result follows by Theorem 3.1 in
Newey and McFadden (1994).

A.6 Proof of Proposition 2

We verify Assumptions 1 – 4 of de Jong and Davidson (2000), in order to apply their
Theorem 2.2 with

Xt,T (θ) := T−1/2l̇t,T (θ, ϵ
2
t,T ), Xt,T := Xt,T (θ

⋆).

Their Assumption 1 holds by our Assumption 16. For their Assumption 2, let Ft,T :=
σ(ϵ21,T , . . . , ϵ

2
t,T ), dt,T := ct,T = T−1/2.18 Since each Xt,T is Ft,T–measurable (and in L2), it

is trivially L2 – NED (of any size) on (ϵ2t,T )1≤t≤T,T∈N and by Assumption 14 this latter array
is α-mixing of size −ρ, with ρ := r/(r − 2) with r as in Assumption 14. Their condition
(2.7) is evidently satisfied by this choice of ct,T , whilst (2.6) holds by Assumptions 2 and
7 since

(∥Xt,T∥Lr + dt,T ) c
−1
t,T = ∥l̇t,T (θ, ϵ2t,T )∥Lrm

+ 1.

Their Assumption 3 holds by Assumption 17. Part (a) of their Assumption 4 is implied by
Theorem 3; part (b) of their Assumption 4 is implied by the (uniform) equicontinuity on V
of {AT : T ∈ N}, which follows from the uniform equicontinuity on Vm of {Am,T : T ∈ N}
for m = 1, . . . ,M (as was noted to hold in the Proof of Theorem 2 and can be established
in exactly the same way in the present setting). For part (c) of their Assumption 4, we
note that the rate condition in (ii) is satisfied under Assumption 17, whilst (2.10) holds
by Assumption 7 and Assumption 8 iii since for some C ∈ (0,∞),

sup
θ∈V

∥∥∥∥∥
T∑
t=1

[∇θXt,T (θ)
′] [∇θXt,T (θ)]

∥∥∥∥∥ ≤ sup
θ∈V

1

T

T∑
t=1

∥∥∥l̈t,T (θ, ϵ2t,T )∥∥∥2
≤ 1

T

T∑
t=1

C2

M∑
m=1

υ2m,t,T

= OP (1).

Finally, their (2.8) holds as – also by Assumption 7 and Assumption 8 iii –

E sup
θ∈V

∥∇θXt,T (θ)∥2 = E sup
θ∈V

1

T

∥∥∥l̈t,T (θ, ϵ2t,T )∥∥∥2 ≤ C2

T

M∑
m=1

Eυ2m,t,T = O(T−1).

Hence the claim follows by Theorem 2.2 in de Jong and Davidson (2000).

18Cf. footnote 12.
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B Auxiliary results

Lemma 1. Suppose that Assumptions 2 and 8(i) hold and that

sup
θm∈Vm

sup
1≤t≤T,T∈N

∥g̈m,t,T (θm)∥ <∞. (40)

Then, Assumption 8(iii) holds with υm,t,T := 1 + ϵ2m,t,T .

Proof. By direct calculation the (i, j)-th element of l̈m,t,T (θm, ϵ
2
m,t,T ) is

[l̈m,t,T (θm, ϵ
2
m,t,T )]i,j

= ϵ2m,t,T

(
2[ġm,t,T (θm)]i[ġm,t,T (θm)]j

gm,t,T (θm)3
− [g̈m,t,T (θm)]i,j

gm,t,T (θm)2

)
+

(
[g̈m,t,T (θm)]i,j
gm,t,T (θm)

− [ġm,t,T (θm)]i[ġm,t,T (θm)]j
gm,t,T (θm)2

)
.

By Assumption 2, 8(i), and equation (40)

0 < cρ ≤ |gm,t,T |ρ ≤ C0,ρ <∞, |[ġm,t,T ]k| ≤ C1 <∞, and |[g̈m,t,T ]k,l| ≤ C2 <∞

uniformly in t, T and θm ∈ Vm, ρ = 1, 2, 3 and k, l = 1, . . . , K, where K is the dimension
of θm. Therefore, for C0 := max{2C2

1c
−1
3 + C2c

−1
2 , C2c

−1
1 + C2

1c
−1
2 } <∞,

∥l̈m,t,T (θm, ϵ
2
m,t,T )∥∞ = max

1≤i,j≤K
|[l̈m,t,T (θm, ϵ

2
m,t,T )]i,j|

≤ ϵ2m,t,T (2C
2
1c

−1
3 + C2c

−1
2 ) + C2c

−1
1 + C2

1c
−1
2

≤ C0(1 + ϵ2m,t,T ).

Since ∥ · ∥∞ is a norm on the space of K × K matrices (e.g. Horn and Johnson, 2013,
p. 342) and all norms on the same finite dimensional vector space are equivalent, this
implies that

∥l̈m,t,T (θm, ϵ
2
m,t,T )∥ ≤ C(1 + ϵ2m,t,T ),

for some constant C > 0 and hence the claim follows with φm,t,T (θm) := C.

Lemma 2. Under Assumptions 2, 4 and 9, Bm,T = O(1) for Bm,T as in Assumption 10.

Proof. By Davydov’s inequality (e.g. Davidson, 1994, Corollary 14.3), (30) and Assump-
tion 4 for 1 ≤ t, s ≤ T , any indices l, k, and rm = 2 + δm/2,

|Cov(l̇m,t,T,l, l̇m,s,T,k)| ≤ 6∥l̇m,t,T,l∥Lrm
∥l̇m,s,T,k∥Lrm

αm,T (|t−s|)1−2/rm ≲ sup
T∈N

αm,T (|t−s|)1−2/rm .
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Hence

eT :=

∣∣∣∣∣E
[
T−1

T∑
t=1

T∑
s=1

l̇m,t,T,ll̇m,s,T,k

]∣∣∣∣∣ ≲ T−1

T∑
t=1

T∑
s=1

sup
T∈N

αm,T (|t− s|)1−2/rm

=
T∑

k=−T

(
1− |k|

T

)
sup
T∈N

αm,T (|k|)1−2/rm

≤ 2
T∑

k=0

(
1− k

T

)
sup
T∈N

αm,T (k)
1−2/rm

By Assumption 9, for all sufficiently large k ≥ K ∈ N, supT∈N αm,T (k)
1−2/rm ≲ k−rm/(rm−2)−ε.

Hence for some constant C > 0

eT ≲ C +
T∑

k=K

k−rm/(rm−2)−ε ≤ C +
∞∑
k=0

k−rm/(rm−2)−ε <∞

since rm/(rm − 2) + ε > 1. Hence Bm,T = O(1).

Lemma 3. If Assumptions 2, 4 and parts i, iii of Assumption 8 hold, then Am,T (θm) =
O(1) for each θm ∈ Vm.

Proof. By Jensen’s inequality and part iii of Assumption 8,∥∥∥E [l̈m,t,T (θm, ϵ
2
m,t,T )

]∥∥∥ ≤ E
∥∥∥l̈m,t,T (θm, ϵ

2
m,t,T )

∥∥∥ ≤ φm,t,T (θm)E|υm,t,T |,

with E|υm,t,T |2 ≤ C1 <∞ and φm,t,T (θm) ≤ C2 <∞. Putting C =
√
C1C2, one then has

that ∥∥∥E [l̈m,t,T (θm, ϵ
2
m,t,T )

]∥∥∥ ≤ C.

Hence T−1
∑T

t=1

∥∥∥E [l̈m,t,T (θm, ϵ
2
m,t,T )

]∥∥∥ is bounded above by C, which implies the result.

Lemma 4. Under Assumptions 2, 4 and 14, BT = O(1) for BT as in Assumption 15.

Proof. The proof follows analogously to that of Lemma 2 on replacing rm with r, δm with
min{δ1, . . . , δM} and αm,T with αT .

Lemma 5. In the setting of Theorem 6, for any θT
P−→ θ⋆,

∂γm(θT )

∂θ′
P−→ F

⋆

m =
(
Fm,0(θ

⋆),Fm,1(θ
⋆),Fm,2(θ

⋆)
)′
.

Proof. Dropping the m in the notation, let FT (θ) :=
1
T

∑T
t=1 bt,T (θ) on V . It is clearly suf-

ficient to show that FT converges to F ⋆ uniformly in probability. Initially, we show point-
wise convergence in probability of FT −F T to zero on V . Let Xt,T := bt,T (θ)−E[bt,T (θ)]
and Ft,T := σ(Xt,T , Xt−1,T , . . .). Assumptions 2,20 allow the application of Theorems 14.1
& 14.2 in Davidson (1994) to permit the conclusion that (Xt,T/T,Ft,T )1≤t≤T,T∈N is an L1

– mixingale arrray with respect to the constants ct,T = 1/T . Therefore Theorem 19.11 in
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Davidson (1994) yields that

FT (θ)− F T (θ) =
1

T

T∑
t=1

bt,T (θ)− E[bt,T (θ)]
P−→ 0. (41)

By Assumption 21, one has

∥F T (θ)− F T (θ
′)∥ ≤ 1

T

T∑
t=1

E ∥bt,T (θ)− bt,T (θ
′)∥

≤ 1

T

T∑
t=1

Eψ̃t,T∥θ − θ′∥

≤ C∥θ − θ′∥,

for some constant C ∈ (0,∞). Hence each F T is Lipschitz on V with a common Lipschitz
constant and so uniformly equicontinuous on V . Similarly,

∥FT (θ)− FT (θ
′)∥ ≤

[
1

T

T∑
t=1

ψ̃t,T

]
∥θ − θ′∥,

with 1
T

∑T
t=1 ψ̃t,T = OP (1). In combination with the uniform equiconitinuity of F T , this

verifies Assumption SE-1 in Andrews (1992) (elementwise). Hence Lemma 1 of Andrews
(1992) yields that for each co-ordinate k, {FT,k −F T,k : T ∈ N} is stochastically equicon-
tinuous on V . Given (41) and that V is totally bounded as a subset of a compact metric
space, Theorem 1 in Andrews (1992) applied to each co-ordinate k yields that

sup
θ∈V

∥FT (θ)− F T (θ)∥
P−→ 0.

By Assumption 21, F T (θ) − F
⋆ → 0 as T → ∞. Since, as noted above, {F T : T ∈ N}

is uniformly equicontinuous on the totally bounded set V , this convergence is uniform.
Combining this with the preceding display yields

sup
θ∈V

∥FT (θ)− F
⋆
(θ)∥ P−→ 0.

Since θ̄T
P−→ θ, and V is a neighbourhood of θ, the claim follows.

Lemma 6. Let J := {x ∈ Rs : x1 > x2 > · · · > xs > 0} and X : Rs → Rs×s be the
function:

X(x) :=



x1 x2 . . . xs−1 xs
x2 x2 . . . xs−1 xs
x3 x3 . . . xs−1 xs
...

...
. . .

...
...

xs−1 xs−1 . . . xs−1 xs
xs xs . . . xs xs


.

Then the image of J under X is a subset of the convex cone of positive definite s × s
matrices.
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Proof. It suffices to show that each X(x) is positive definite. Any such X(x) is clearly
symmetric. If s = 1 then x ∈ J iff x1 > 0 and X(x) = [x1] ≻ 0. Now suppose that
the conclusion holds for matrices of size k − 1 × k − 1. We will show that the image of
Jk := {x ∈ Rk : x1 > · · · > xk > 0} under Xk is a subset of convex cone of positive
definite k × k matrices where

Xk(x) :=



x1 x2 . . . xk−1 xk
x2 x2 . . . xk−1 xk
x3 x3 . . . xk−1 xk
...

...
. . .

...
...

xk−1 xk−1 . . . xk−1 xk
xk xk . . . xk xk


.

In particular, by the induction hypothesis

A =


x2 . . . xk−1 xk
x3 . . . xk−1 xk
...

. . .
...

...
xk−1 . . . xk−1 xk
xk . . . xk xk

 ,

(the matrix obtained by removing the first column and row of Xk(x)) is positive definite
since x2 > x3 > · · · > xk > 0. Define a := [x2, . . . , xk]

′. By Proposition 8.2.4 in Bernstein
(2009) it suffices to show that x1 − a′A−1a > 0. As x1 > x2 it is enough to note that
a′A−1a = x2 since

A−1a = d ⇐⇒ a = Ad,

and choosing d = e1 satisfies the right hand side.

C Proofs of the results in Section 3

C.1 A useful lemma for verification of Assumption 8

Verifying Assumption 8 requires the choice of the functions φm,t,T and ψm,t,T . For the
class of functions that is the main target of our theory, third order differentiability with
respect to θm along with certain domination conditions simplifies the choices of φm,t,T

and ψm,t,T . This is recorded formally in Lemma 7 below. Next, the Lemma is used to
show that Assumption 8 holds for the class of functions that is the main target of our
theory in Sections C.2 – C.4.

Lemma 7. Suppose that Assumptions 2 and 4 hold, and that each gm,t,T is three-times

differentiable on a neighbourhood Vm of θ⋆
m. Let

...
g m,t,T,(j,l,k) :=

∂[g̈m,t,T (θm)]j,l
∂[θm]k

denote the

(j, l, k) entry of the array of third order derivatives and suppose also that for some func-
tions gm(θm), gm(θm),

∥g̈m,t,T (θm)∥ ≤ gm(θm) ≤ sup
θm∈Vm

gm(θm) <∞.

46



and
| ...g m,t,T,(j,l,k)(θm)| ≤ gm(θm) ≤ sup

θm∈Vm

gm(θm) <∞.

Then Assumption 8 holds.

Note that the boundedness of the dominating functions gm and gm is automatic if Vm is
taken to be compact and gm and gm are continuous.

Proof. That Assumption 8 part i holds follows immediately from the assumption of three
– times differentiability. Given this, part ii is simply a definition and requires no proof.

For part iii it suffices to note that equation (40) holds as

sup
θm∈Vm

∥g̈m,t,T (θm)∥ ≤ sup
θm∈Vm

gm(θm) <∞,

and hence we may apply Lemma 1.
Finally, for part iv, note that the derivative of the (i, j) element of l̈m,t,T with respect

to [θm]k has the form

ϵ2m,t,T

(
2[g̈m,t,T (θm)]i,k[ġm,t,T (θm)]j

gm,t,T (θm)3
+

2[ġm,t,T (θm)]i[g̈m,t,T (θm)]j,k
gm,t,T (θm)3

+
2[g̈m,t,T (θm)]i,j[ġm,t,T (θm)]k

gm,t,T (θm)3

)
− ϵ2m,t,T

(
6[ġm,t,T (θm)]i[ġm,t,T (θm)]j[ġm,t,T (θm)]k

gm,t,T (θm)4
+

...
g m,t,T,(i,j,k)(θm)

gm,t,T (θm)2

)
+

(
−[g̈m,t,T (θm)]i,j[ġm,t,T (θm)]k

gm,t,T (θm)2
+

...
g m,t,T,(i,j,k)(θm)

gm,t,T (θm)
− [g̈m,t,T (θm)]i,k[ġm,t,T (θm)]j

gm,t,T (θm)2

)
+

(
−[ġm,t,T (θm)]i[g̈m,t,T (θm)]j,k

gm,t,T (θm)2
+

2[ġm,t,T (θm)]i[ġm,t,T (θm)]j[ġm,t,T (θm)]k
gm,t,T (θm)3

)
which, given the boundedness of each 0th, 1st, 2nd and 3rd derivative uniformly over
θm and t, T already established, this is bounded by C(ϵ2m,t,T + 1) for some constant
C ∈ (0,∞).19 Moreover, this bound is uniform over all i, j, k indices. Hence by the
mean value theorem, the required inequality holds with ψm,t,T := C(ϵ2m,t,T + 1). That
sup1≤t≤T,T∈NE|ψm,t,T | <∞ then follows directly from Assumptions 2 and 4.

C.2 Proof of Proposition 3

To simplify notation we omit the subscriptm. Lemma A.1 in Amado and Teräsvirta (2013,
p. 150) contains the derivatives of gt,T with respect to θ. It is clear that for Assumption 2
holds for a suitable set Θ∗. Lemma A.2 in Amado and Teräsvirta (2013, p. 150) contains
the second derivatives of gt,T with respect to θ. Inspection of the entries of the matrix
g̈t,T (θ) reveals there exists a smallest upper bound that uniformly bounds ∥g̈t,T (θ)∥ in
Lemma 7, and which therefore serves as dominating function. Finally, inspection of the
third derivatives reveals that there also exists a smallest upper bound that uniformly
bounds | ...g t,T (θ)|, where

...
g t,T (θ) is a generic entry in the array of third derivatives. So

the constant upper bound serves as dominating function, and hence Assumption 8 holds.

19Specifically gm,t,T (θm) is bounded above and below by Assumption 2; the first derivatives ġm,t,T

have their norm bounded above by Assumption 2. The boundedness of ∥g̈m,t,T ∥ holds by the gm –
domination hypothesis of this Lemma, whilst the boundedness of each | ...g m,t,T,(i,j,k)(θm, )∥ holds by the

gm – domination hypothesis of this Lemma.
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THE REST OF THE PROOF: TBA

C.3 Proof of Proposition 4

To simplify notation we omit the subscript m. The first, second and third partial deriv-
atives of gt,T (θ) are

ġt,T (θ) = gt,T (θ)·
(
1, I(t/T ≥ c1), . . . , I(t/T ≥ cs)

)′
,

g̈t,T (θ) = gt,T (θ)·
1 I(t/T ≥ c1) · · · I(t/T ≥ cs)
I(t/T ≥ c1) I(t/T ≥ c1) · I(t/T ≥ c1) · · · I(t/T ≥ c1) · I(t/T ≥ cs)

...
...

. . .
...

I(t/T ≥ cs) I(t/T ≥ cs) · I(t/T ≥ c1) · · · I(t/T ≥ cs) · I(t/T ≥ cs)

 ,

∂3gt,T (θ)

∂θ∂θ′∂θk
= g̈t,T (θ) ·

∂gt,T (θ)

∂θk
for k = 1, . . . , s+ 1.

It follows straightforwardly that ġt,T (θ) satisfies Assumption 2. Next, on a suitable com-
pact subset of Θ∗, both ∥g̈t,T (θ)∥ and |gt,T (θ)| in Lemma 7 are uniformly bounded by
sufficiently large constants that serve as dominating functions. In consequence, (13) sat-
isfies Assumption 8.

The limit in Assumption 5 can be written as L(θ) = L1(θ) + L2(θ), where

L1(θ) = lim
T→∞

1

T

T∑
t=1

ln gt,T (θ) and L2(θ) = lim
T→∞

1

T

T∑
t=1

E
(
ϵ2t/gt,T (θ)

)
.

The first term is

L1(θ) = δ0 +

∫ 1

c1

δ1dx+ · · ·+
∫ 1

cs

δsdx = δ0 +
s∑

l=1

δl(1− cl) =
s∑

l=0

δl(1− cl),

where c0 = 0. The second term is, using that E(ϵ2t,T ) = gt,T (θ
⋆) for all t, T ,

L2(θ) = lim
T→∞

1

T

T∑
t=1

E(ϵ2t )

gt,T (θ)
= lim

T→∞

1

T

T∑
t=1

gt,T (θ
⋆)

gt,T (θ)
=

∫ 1

0

g(θ⋆, x)

g(θ, x)
dx.

Let g(θ⋆,θ, x) = g(θ⋆, x)/g(θ, x), so that

g(θ⋆,θ, x) = exp
(
δ⋆0 − δ0

)
· exp

(
(δ⋆1 − δ1)I(x ≥ c1)

)
· · · exp

(
(δ⋆s − δs)I(x ≥ cs)

)
and∫ 1

0

g(θ⋆,θ, x)dx =

∫ c1

0

g(θ⋆,θ, x)dx+

∫ c2

c1

g(θ⋆,θ, x)dx+ · · ·+
∫ 1

cs

g(θ⋆,θ, x)dx,
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where ∫ c1

0

g(θ⋆,θ, x)dx = exp
(
δ⋆0 − δ0

)
· (c1 − c0)∫ c2

c1

g(θ⋆,θ, x)dx = exp
(
δ⋆0 − δ0

)
· exp

(
δ⋆1 − δ1

)
· (c2 − c1)

...∫ 1

cs

g(θ⋆,θ, x)dx = exp
(
δ⋆0 − δ0

)
· exp

(
δ⋆1 − δ1

)
· · · exp

(
δ⋆s − δs

)
· (1− cs).

The sum of these terms is∫ 1

0

g(θ⋆,θ, x)dx =
s∑

l=0

(cl+1 − cl)
l∏

k=0

exp(δ⋆k − δk) with c0 = 0 and cs+1 = 1,

In conclusion,

L(θ) =
s∑

l=0

δl(1− cl) +
s∑

l=0

(cl+1 − cl)
l∏

k=0

exp(δ⋆k − δk),

and from Assumption 2(i) it follows that
∣∣L(θ)∣∣ <∞ on Θ∗.

For i = 0, 1, 2, . . . , s

∂L(θ)

∂δi
= (1− ci)−

s∑
l=i

(cl+1 − cl)
l∏

k=0

exp(δ⋆k − δk) with c0 = 0 and cs+1 = 1.

Hence, at θm = θ⋆
m the derivatives are

∂L(θ⋆)

∂δ0
= (1− c0)−

(
(c1 − c0) + (c2 − c1) + · · ·+ (1− cs)

)
= (1− c0)− 1 = 0

∂L(θ⋆)

∂δ1
= (1− c1)−

(
(c2 − c1) + · · ·+ (1− cs)

)
= (1− c1)− (1− c1) = 0

...
∂L(θ⋆)

∂δs−1

= (1− cs−1)−
(
(cs − cs−1) + (1− cs)

)
= (1− cs−1)− (1− cs−1) = 0

∂L(θ⋆)

∂δs
= (1− cs)− (1− cs) = 0.

Accordingly, θ⋆ is a stationary point of L(θ).
By differentiating ∂L(θ)/∂δi with respect to δj, it follows that the generic (i+1, j+1)

entry of L̈(θ), with i, j ∈ {0, 1, 2, . . . , s}, is

L̈ij(θ) =
s∑

l=i

I(l ≥ j) · al(θ) =
s∑

l=max{i,j}

al(θ),
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where al(θ) := (cl+1 − cl)
∏l

k=0 exp(δ
⋆
k − δk) > 0. Fix any θ and set al := al(θ). Then

L̈(θ) =



∑s
l=0 al

∑s
l=1 al . . .

∑s
l=s−1 al

∑s
l=s al∑s

l=1 al
∑s

l=1 al . . .
∑s

l=s−1 al
∑s

l=s al∑s
l=2 al

∑s
l=2 al . . .

∑s
l=s−1 al

∑s
l=s al

...
...

. . .
...

...∑s
l=s−1 al

∑s
l=s−1 al . . .

∑s
l=s−1 al

∑s
l=s al∑s

l=s al
∑s

l=s al . . .
∑s

l=s al
∑s

l=s al


.

As al > 0, we have
∑s

l=0 al >
∑s

l=1 al > · · · >
∑s

l=s al = as > 0. Let xi :=
∑s

l=i al. Then

L̈(θ) =



x0 x1 . . . xs−1 xs
x1 x1 . . . xs−1 xs
x2 x2 . . . xs−1 xs
...

...
. . .

...
...

xs−1 xs−1 . . . xs−1 xs
xs xs . . . xs xs


.

This is positive definite for any θ ∈ Θ∗ by Lemma 6 and hence L(θ) is strictly convex
since the set Θ∗ is open and convex by Assumption 2. Next, part 1 of Theorem 7.13 in
Sundaram (1996) implies θ⋆ is a global minimum, and Theorem 7.14 (Sundaram, 1996)
implies the set of minimisers of L over Θ∗ is either empty or a singleton. In conclusion,
θ⋆ is the unique minimiser of L(θ) on Θ∗.

C.4 Proof of Proposition 5

To simplify notation we omit the subscript m. The limit L(θ) in Assumption 5 is made
up of two terms:

L(θ) = L1(θ) + L2(θ) = lim
T→∞

1

T

T∑
t=1

ln gt,T (θ) + lim
T→∞

1

T

T∑
t=1

E
(
ϵ2t/gt,T (θ)

)
.

The first term is

L1(θ) = δ0 +

∫ 1

c1

δ1(x− c1)
2dx+ · · ·+

∫ 1

cs

δs(x− cs)
2dx

= δ0 +
s∑

l=1

δl

∫ 1

cl

(x− cl)
2dx

= δ0 −
1

3

s∑
l=1

δl(cl − 1)3.

The second term in the limit L(θ) is, using that E(ϵ2t,T ) = gt,T (θ
⋆) for all t, T ,

L2(θ) = lim
T→∞

1

T

T∑
t=1

gt,T (θ
⋆)

gt,T (θ)
.
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Noting that we can write

1

T

T∑
t=1

gt,T (θ
⋆)

gt,T (θ)
=

1

T

T∑
t=1

exp
(
δ⋆0 − δ0

)
·

s∏
l=1

exp
(
(δ⋆l − δl)(t/T − cl)

2I(t/T ≥ cl)
)

=
1

T

T∑
t=1

g(θ⋆,θ, t/T )

=
1

T

∑
c0≤x<c1

g(θ⋆,θ, x) + · · ·+ 1

T

∑
cs≤x<cs+1

g(θ⋆,θ, x)

where x = t/T , letting T → ∞ gives

lim
T→∞

1

T

T∑
t=1

g(θ⋆,θ, t/T ) =

∫ c1

0

g(θ⋆,θ, x)dx+

∫ c2

c1

g(θ⋆,θ, x)dx+ · · ·+
∫ 1

cs

g(θ⋆,θ, x)dx,

where ∫ c1

0

g(θ⋆,θ, x)dx = exp
(
δ⋆0 − δ0

)
· c1∫ c2

c1

g(θ⋆,θ, x)dx = exp
(
δ⋆0 − δ0

)
·
∫ c2

c1

exp
(
(δ⋆1 − δ1)(x− c1)

2
)
dx

...∫ 1

cs

g(θ⋆,θ, x)dx = exp
(
δ⋆0 − δ0

)
·
∫ 1

cs

s∏
l=1

exp
(
(δ⋆l − δl)(x− cl)

2
)
dx.

Their sum is∫ 1

0

g(θ⋆,θ, x)dx = exp
(
δ⋆0 − δ0

)
·

(
c1 +

s∑
l=1

∫ cl+1

cl

l∏
k=1

exp
(
(δ⋆k − δk)(x− ck)

2
)
dx

)
,

where cs+1 = 1. Hence

L(θ) = δ0−
s∑

l=1

δl
3
(cl−1)3+exp

(
δ⋆0−δ0

)(
c1 +

s∑
l=1

∫ cl+1

cl

l∏
k=1

exp
(
(δ⋆k − δk)(x− ck)

2
)
dx

)
.

We now show that L̇(θ⋆) = 0. For i = 0, ∂L(θ)
∂δ0

= 1− L2(θ) and it is straightforward

to verify that L2(θ
⋆) = 1 and therefore that ∂L(θ)

∂δ0
= 0. Next, for i = 1, . . . , s,

∂L(θ)

∂δi
= −1

3
(ci−1)3−exp(δ⋆0 −δ0)

(
s∑

l=i

∫ cl+1

cl

(x− ci)
2

l∏
k=1

exp
(
(δ⋆k − δk)(x− ck)

2
)
dx

)
.

so, at θ = θ⋆,

∂L(θ)

∂δi
= −1

3
(ci − 1)3 −

s∑
l=i

∫ cl+1

cl

(x− ci)
2dx =

∫ 1

ci

(x− ci)
2dx−

∫ 1

ci

(x− ci)
2dx = 0.

51



Moreover, Assumption 2 is evidentally satisfied. The second derivatives are (j ≥ 1)

∂2L(θ)

∂δ20
= L2(θ)

∂2L(θ)

∂δ0∂δj
= exp(δ⋆0 − δ0)

(
s∑

l=j

∫ cl+1

cl

(x− cj)
2

l∏
k=1

exp
(
(δ⋆k − δk)(x− ck)

2
)
dx

)
∂2L(θ)

∂δi∂δj
= exp(δ⋆0 − δ0)

(
s∑

l=i

I(j ≤ l)

∫ cl+1

cl

(x− ci)
2(x− cj)

2

l∏
k=1

exp
(
(δ⋆k − δk)(x− ck)

2
)
dx

)
.

These functions are continuously differentiable a further time in each δk, hence Lemma 7
ensures Assummption 8 holds. If L̈(θ) is positive definite on Θ∗ then L(θ) has a unique
minimum over this set by the same argument which concludes the proof of Proposition 4.

D Proofs of the results in Section 4

D.1 The infeasible case

In the infeasible case, {ϕ2
m,t} is observed and the QMLE is

ϑ̂⋆
m = arg min

ϑm∈Ξ

1

T

T∑
t=1

lt(ϑm, ϕ
2
m,t), lt(ϑm, ϕ

2
m,t) = lnht(ϑm) +

ϕ2
m,t

ht(ϑm)
. (42)

To emphasise that this estimator is infeasible, we add ⋆ as superscript. For this estimator
to be strongly consistent (see Theorem 5 below), a compactness assumption is needed:

Assumption 18. For each m = 1, . . . ,M , ϑ⋆
m ∈ Ξm and Ξm is compact.

Next, the following additional assumption ensures the process {ϕ2
m,t} is β-mixing with

exponential decay, which implies that also the α-mixing assumption in Assumption 3
holds.

Assumption 19 (condition η in Carrasco and Chen 2002). For each m = 1, . . . ,M ,
the probability distribution of ηm,t has a continuous density (with respect to the Lebesgue
measure on the real line), and its density is positive on (−∞,∞).

Theorem 5 (Consistency, infeasible case). Suppose {ϕ2
m,t} is governed by (16)–(17), and

that Assumption 18 holds. Then ϑ̂⋆
m

P→ ϑ⋆
m, m = 1, . . . ,M . If, in addition, Assumption

19 holds, then {ϕ2
m,t} is β-mixing with exponential decay, m = 1, . . . ,M .

Proof of Theorem 5. To simplify notation, we omit the subscript m. Strong consistency
of ϑ̂⋆ follows if the four assumptions of Theorem 7.1 in Francq and Zaköıan (2019) hold.
In the GARCH(1,1) case, the four assumptions are:

A1 ϑ⋆ ∈ Ξ and Ξ is compact

A2 The top Lyapunov exponent is strictly negative

A3 η2t has non-degenerate distribution and E(η2t ) = 1
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A4 If the GARCH order p > 0, then Aϑ⋆(z) = α⋆z and Bϑ⋆(z) = 1 − β⋆z have no
common roots, Aϑ⋆(1) ̸= 0 and (α⋆ + β⋆) ̸= 0

A1 holds by Assumption 18. A2 holds since −∞ ≤ E
(
ln(α⋆η2t + β⋆)

)
< 0, see Theorem

2.1 in Francq and Zaköıan (2019, p. 22). Note that (α⋆ + β⋆) < 1 implies −∞ ≤
E
(
ln(α⋆η2t + β⋆)

)
< 0, since E

(
ln(α⋆η2t + β⋆)

)
≤ lnE(α⋆η2t + β⋆) = ln(α⋆ + β⋆) < 0

by Jensen’s inequality. A3 holds due to ηt ∼ iid(0, 1) in (16). For p > 0 to occur in
A4, we must have β⋆ > 0. In this case, Aϑ⋆(z) = α⋆z and Bϑ⋆(z) = 1 − β⋆z have no
common roots, since the only root of the former is z = 0 and the latter has no roots.

Also, Aϑ⋆(1) ̸= 0 and (α⋆ + β⋆) ̸= 0, since α⋆ > 0 in (17). So ϑ̂⋆ P→ ϑ⋆. That {ϕ2
t} is

β-mixing with exponential decay if Assumption 19 also holds, follows from Corollary 6 in
Carrasco and Chen (2002).

D.2 Proof of Proposition 6

For notational convenience we omit the subscript m. α⋆ and β⋆ are well defined and finite
provided γ⋆1 ̸= 0 and (γ⋆2/γ

⋆
1) ̸= (γ⋆1/γ

⋆
0) which ensure that ρ⋆(1) ̸= 0 and ρ⋆(2)/ρ⋆(1) −

ρ⋆(1) ̸= 0. From (20) it follows that α⋆ + β⋆ = γ⋆2/γ
⋆
1 . Therefore γ⋆2 < γ⋆1 and γ⋆2/γ

⋆
1 > 0

suffice for 0 < α⋆ + β⋆ < 1. Next, setting the expression for β⋆ in (20) to 0 yields
a contradiction, so β⋆ cannot be 0. As b⋆ > 2, (b⋆)2 − 4 > 0 and hence β⋆ is real,
strictly positive and less than 1. The existence of the prediction in (23) follows from these
observations.

D.3 Proof of Theorem 4

For notational convenience we omit the subscript m. By a mean-value expansion,

γ̂j(θ̂T ) = γ̂j(θ
⋆) +

∂γ̂j(θT )

∂θ′ (θ̂T − θ⋆),

where θT is a mean-value between θ̂T and θ⋆. Given Theorem 1 it follows that γ̂j(θ̂T )
P−→

γ⋆j if γ̂j(θ
⋆)

P−→ γ⋆j and
∂γ̂j(θT )

∂θ′ = OP (1). We first show that γ̂j(θ
⋆) is consistent. At θ⋆,

γ̂j(θ
⋆) =

1

T

T∑
t=1

(
ϕ2
t,T − 1

)(
ϕ2
t−j,T − 1

)
=

1

T

T∑
t=1

ϕ2
t,Tϕ

2
t−j,T − ϕ2

t,T − ϕ2
t−j,T + 1,

=
1

T

T∑
t=1

a(ϕ2
t,T , ϕ

2
t−j,T ),

where a(ϕ2
t,T , ϕ

2
t−j,T ) is defined to be the summand to make the notation more compact.

The assumption in Proposition 6 implies that γ⋆t,j,T is constant across t, T for j = 0, 1, 2 and

so Ea
(
ϕ2
t,Tϕ

2
t−j,T

)
= γ⋆j is constant over t, T for j = 0, 1, 2. Let Xt,T := a(ϕ2

t,T , ϕ
2
t−j,T ) −

E
(
a(ϕ2

t,T , ϕ
2
t−j,T )

)
and let Ft,T := σ({Xi,T : 1 ≤ i ≤ t}). Assumption 7 yields that

sup1≤t≤T,T∈NE|Xt,T |p <∞ for some p > 1. Hence {Xt,T : 1 ≤ t ≤ T, T ∈ N} is uniformly
integrable and, given Assumption 3, {Xt,T/T,Ft,T : 1 ≤ t ≤ T, T ∈ N} forms a L1-
mixingale array with respect to the constants ct,T = 1/T by Theorems 14.1 and 14.2 in
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Davidson (1994). Therefore, by Theorem 19.11 in Davidson (1994),

E

∣∣∣∣∣ 1T
T∑
t=1

a(ϕ2
t,T , ϕ

2
t−j,T )−

1

T

T∑
t=1

E
(
a(ϕ2

t,T , ϕ
2
t−j,T )

)∣∣∣∣∣ → 0,

which implies γ̂j(θ
⋆)

P→ γ⋆j , j = 0, 1, 2. We now show that
∂γ̂j(θT )

∂θ′ = OP (1). We have

∂γ̂j(θ)

∂θ
=

1

T

T∑
t=1

∂ϕ̂2
t,T (θ)

∂θ
ϕ̂2
t−j,T (θ) + ϕ̂2

t,T (θ)
∂ϕ̂2

t−j,T (θ)

∂θ
−
∂ϕ̂2

t,T (θ)

∂θ
−
∂ϕ̂2

t−j,T (θ)

∂θ

with

ϕ̂2
t−j,T (θ) =

gt−j,T (θ
⋆)ϕ2

t−j,T

gt−j,T (θ)
,

∂ϕ̂2
t−j,T (θ)

∂θ
= −

gt−j,T (θ
⋆)ϕ2

t−j,T(
gt−j,T (θ)

)2 ġt−j,T (θ), j = 0, 1, 2.

For more compact notation, let
∂γ̂j(θ)

∂θ′ = Fj,T (θ) = T−1
∑T

t=1 bt,T (ϕ
2
t,T , ϕ

2
t−j,T ,θ), i.e.

bt,T (ϕ
2
t,T , ϕ

2
t−j,T ,θ) := ϕ2

t,T

(
gt,T (θ

⋆)ġt,T (θ)

gt,T (θ)2

)
+ ϕ2

t−j,T

(
gt−j,T (θ

⋆)ġt−j,T (θ)

gt−j,T (θ)2

)
− ϕ2

t,Tϕ
2
t−j,T

(
gt,T (θ

⋆)ġt,T (θ)

gt,T (θ)2
gt−j,T (θ

⋆)

gt−j,T (θ)
+
gt−j,T (θ

⋆)ġt−j,T (θ)

gt−j,T (θ)2
gt,T (θ

⋆)

gt,T (θ)

)
.

By Assumption 2 and the fact that θ
P−→ θ⋆ given Theorem 1 as it is a mean-value between

θ̂T and θ⋆, the absolute value of each of the terms in parenthesis is bounded above by
some constant C on sets En with P (En) → 1. On these sets

Fj,T (θ) ≤ C
1

T

T∑
t=1

ϕ2
t,T + ϕ2

t−j,T + ϕ2
t,Tϕ

2
t−j,T .

By Markov’s inequality and Assumption 7

P

(
1

T

T∑
t=1

ϕ2
t,T + ϕ2

t−j,T + ϕ2
t,Tϕ

2
t−j,T > M

)
≤M−1 1

T

T∑
t=1

E
[
ϕ2
t,T + ϕ2

t−j,T + ϕ2
t,Tϕ

2
t−j,T

]
≲M−1.

Combine these observations to conclude that Fj,T (θ) = OP (1). Thus, γ̂m,j(θ̂T )
P→ γ⋆m,j

and by the continuous mapping theorem (α̂m, β̂m)
′ P→ (αm, βm)

′.

D.4 Proof of Theorem 6

To prove asymptotic normality of the least squares estimators, we require the following
additional conditions.

Assumption 20. For each m = 1, . . . ,M , sup1≤t≤T,T∈NE|ϕ4
m,t,T |2+δ̃m for some δ̃m > 0.

Additionally, the strong mixing coefficients αm,T (k) satisfy

sup
T∈N

αm,T (k) = O(k−ρ̃m−ε),
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for some ε > 0 where ρ̃m := r̃m/(r̃m − 2) with r̃m := 2 + δ̃m.

For the following condition, let Fm,T be defined (on Vm) as

Fm,T (θm) :=
1

T

T∑
t=1

E[bm,t,T (θm)], bm,t,T :=
(
bm,t,T,0 bm,t,T,1 bm,t,T,2

)′
,

where for j = 0, 1, 2,

bm,t,T,j(θm) := ϕ2
m,t,T

(
gm,t,T (θ

⋆
m)ġm,t,T (θm)

gm,t,T (θm)2

)
+ ϕ2

m,t−j,T

(
gm,t−j,T (θ

⋆
m)ġm,t−j,T (θm)

gm,t−j,T (θm)2

)
− ϕ2

m,t,Tϕ
2
m,t−j,T

(
gm,t,T (θ

⋆
m)ġm,t,T (θm)

gm,t,T (θm)2
gm,t−j,T (θ

⋆
m)

gm,t−j,T (θm)

)
− ϕ2

m,t,Tϕ
2
m,t−j,T

(
gm,t−j,T (θ

⋆
m)ġm,t−j,T (θm)

gm,t−j,T (θm)2
gm,t,T (θ

⋆
m)

gm,t,T (θm)

)
.

Assumption 21. For each m = 1, . . . ,M , the limit

F
⋆

m,j(θm) := lim
T→∞

1

T

T∑
t=1

E[bm,t,T,j(θm)], θm ∈ Vm, (43)

exists where Vm is as in Assumption 8. Additionally, there are random variables functions
ψ̃m,t,T such that for θm,θ

′
m ∈ Vm

∥bm,t,T (θm)− bm,t,T (θ
′
m)∥ ≤ ψ̃m,t,T∥θm − θ′

m∥,

with sup1≤t≤T,T∈NE|ψ̃m,t,T | <∞.

The following Assumption strengthens Assumption 10.

Assumption 22. For each m = 1, . . . ,M , as T → ∞,

Dm,T := Var

(
T−1/2

T∑
t=1

ym,t,T

)
→ D⋆

m,

for

ym,t,T :=


l̇m,t,T (θ

⋆
m, ϵ

2
m,t,T )

ϕ4
m,t,T − E(ϕ4

m,t,T )
ϕ2
m,t,Tϕ

2
m,t−1,T − E(ϕ2

m,t,Tϕ
2
m,t−1,T )

ϕ2
m,t,Tϕ

2
m,t−2,T − E(ϕ2

m,t,Tϕ
2
m,t−2,T )

 ,
with D⋆

m positive definite.

Theorem 6 (AN of (α̂m, β̂m)). Suppose the assumptions of Theorems 1, 2, Proposition

6 and Assumptions 20 – 22 hold. Then
√
T (γ̂m − γ⋆

m)
D→ N(0,Σ⋆

m,γ) with Σ⋆
m,γ =

C⋆
mD

⋆
m[C

⋆
m]

′, m = 1, . . . ,M , and

√
T

(
α̂m − α⋆

m

β̂m − β⋆
m

)
D→ N

(
0,Υm(γ

⋆
m)Σm,γΥm(γ

⋆
m)

′), m = 1, . . . ,M, (44)

where Υm(γ
⋆
m) =

(
∂αm(γ⋆

m)
∂γ′

m
, ∂βm(γ⋆

m)
∂γ′

m

)′
.
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The exact expressions for C⋆
m and D⋆

m are contained in the proof. A consistent estimator
of C⋆

m can be derived by using the estimates of gt,T (θ
⋆
m), γ

⋆
m,0, γ

⋆
m,1 and γ

⋆
m,2 as ingredients,

whereas a consistent estimator of D⋆
m of the HAC type can be derived along the same

lines as in Proposition 1.

Proof of Theorem 6. For notational convenience we omit the subscript m. Let γ̂ =(
γ̂0(θ̂), γ̂1(θ̂), γ̂2(θ̂)

)′
, where the expression for γ̂j(θ̂) is contained in (24). By a mean-

value expansion,

γ̂(θ̂T ) = γ̂(θ⋆) +
∂γ(θT )

∂θ′ (θ̂T − θ⋆),

where θT is a mean value between θ̂T and θ⋆. Let γ⋆ = (γ⋆0 , γ
⋆
1 , γ

⋆
2)

′, so that we can write

√
T
(
γ̂(θ̂T )− γ⋆

)
=

√
T
(
γ̂(θ⋆)− γ⋆

)
+
∂γ(θT )

∂θ′

√
T (θ̂T − θ⋆)

=
√
T
(
γ̂(θ⋆)− γ⋆

)
+ F

⋆√
T (θ̂T − θ⋆) + oP (1),

since
√
T (θ̂T − θ⋆) = OP (1) by Theorem 2 and where F

⋆
=
(
F 0(θ

⋆), F 1(θ
⋆), F 2(θ

⋆)
)′

is

the probability limit of ∂γ(θT )/∂θ
′ as T → ∞ which is established in Lemma 5.

Let xt,T =
(
ϕ4
t,T −E(ϕ4

t,T ), ϕ
2
t,Tϕ

2
t−1,T −E(ϕ2

t,Tϕ
2
t−1,T ), ϕ

2
t,Tϕ

2
t−2,T −E(ϕ2

t,Tϕ
2
t−2,T )

)′
. Then

√
T
(
γ̂(θ⋆)− γ⋆

)
=

√
T

(
1

T

T∑
t=1

xt,T

)
.

(The proof of) Theorem 2 (implicitly) uses the result that (cf. Theorem 3.1 in Newey and
McFadden (1994))

√
T (θ̂T − θ⋆) = [A⋆]−1

√
T

(
1

T

T∑
t=1

l̇t,T (θ
⋆, ϵ2t,T )

)
+ oP (1).

Combine these to obtain

√
T
(
γ̂(θ̂T )− γ⋆

)
= F

⋆√
T (θ̂T − θ⋆) +

√
T
(
γ̂(θ⋆)− γ⋆

)
+ oP (1),

= C⋆ T−1/2

T∑
t=1

yt,T + oP (1),

where

C⋆ =

(
F

⋆
[A⋆]−1 I

(3×3)

)
and yt,T =

(
l̇t,T (θ

⋆, ϵ2t,T )
′,x′

t,T

)′
.

with E(yt,T ) = 0 for all t, T by Assumption 4. We now show

T−1/2

T∑
t=1

yt,T
D→ N(0,D⋆), D⋆ := lim

T→∞
Var

(
T−1/2

T∑
t=1

yt,T

)
.

Notice that the upper-left (K×K) block ofD⋆, whereK is the dimension of θ⋆, is equal to
B⋆ in Assumption 10. Let Zt,T := T−1/2λ′yt,T for ∥λ∥2 = 1, and let σT := ∥

∑T
t=1 Zt,T∥L2

and Xt,T = Zt,T/σT . That σT is finite follows from Assumption 20; that it is (at least
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eventually) non-zero follows from Assumption 22. Let Ft,T := σ(ϵ21,T , . . . , ϵ
2
t,T ). We will

verify the conditions of Corollary 1 in de Jong (1997). (a) follows as Xt,T is a mean-zero
random variable with ∥

∑
t,T Xt,T∥L2 = 1. For (b) set ct,T := max{∥Zt,T∥L2 , 1}/σT . By

the moment bounds in Assumption 20

sup
1≤t≤T,T∈N

∥Xt,T/ct,T∥Lrm
≤ sup

1≤t≤T,T∈N
σT∥Xt,T∥Lrm

= sup
1≤t≤T,T∈N

∥Zt,T∥Lrm
<∞, (45)

For (c), since each Xt,T is Ft,T–measurable (and in L2), it is trivially L2 – NED (of any
size) on (ϵ2t,T )1≤t≤T,T∈N and by Assumption 20 this latter array is α-mixing of size −ρ̃m.
Finally, we note that by the moment bounds in Assumption 20 and

Tc2t,T ≤ 1

σ2
T

max{∥yt,T∥2L2
, 1} ≲ 1

σ2
T

.

By Assumption 22

σ2
T =

∥∥∥∥∥
T∑
t=1

Zt,T

∥∥∥∥∥
2

L2

= λ′DTλ→ λ′D⋆λ > 0. (46)

Combination of the preceding displays permits the conclusion that c2t,T = O(T−1), estab-
lishing the final condition of Corollary 1 of de Jong (1997) with β = γ = 0. There-

fore,
∑T

t=1Xt,T
D→ N(0, 1). In conjunction with (46) and Slutsky’s Theorem this

implies
∑T

t=1 Zt,T
D→ N(0, λ′D⋆λ). Hence T−1/2

∑T
t=1 yt,T

D→ N(0,D⋆) holds by the

Cramér – Wold Theorem. Next, applying Slutsky’s theorem again gives
√
T (γ̂ − γ⋆)

D→
N
(
0,C⋆D⋆[C⋆]′

)
. Apply the delta method to obtain (44).
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