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Abstract

We develop a prior for the coefficients of a VAR that allows for flexible non-

dogmatic beliefs on the shape of the structural impulse responses. We achieve

this using an alternative setting of the moments of a Normal prior distribution

on the autoregressive parameters of the model. The methodology we propose is

computationally no more demanding than existing prior specifications; yet it of-

fers a tool for Bayesian shrinkage over key outputs of the model. Introducing the

prior belief that monetary policy shocks generate temporary but persistent ef-

fects leads to a hump-shaped response of GDP, with the peak response occurring

between twelve and eighteen months after the shock.
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1 Introduction

Impulse response functions (IRFs) are one of the most popular tools in modern macroe-

conomics and they have proved essential in exploring how structural shocks affect the

economy. Applications of impulse response analysis include studying how the economy

responds to policy interventions (Caldara and Kamps, 2017, Miranda-Agrippino and

Ricco, 2021), to financial disruptions (Gilchrist and Zakraǰsek, 2012), and to geopo-

litical and uncertainty-related risks (Piffer and Podstawski, 2018), among others.

Researchers typically hold views on what dynamic responses ought to be consid-

ered reasonable. Beliefs are commonly held on the timing, on the persistence of the

responses, as well as on whether they are hump-shaped or not. For example, it is gener-

ally believed that a contractionary monetary policy shock should persistently decrease

inflation, even though the effect may take time to materialize. The long standing

debates about the ‘price puzzle’, the ‘liquidity puzzle’, and the ‘exchange rate puz-

zle’ provide other examples of the beliefs researchers may have about the likely path

of structural responses (Ramey, 2016 Gourinchas and Tornell, 2004). We focus our

analysis on non-dogmatic beliefs, that is beliefs that are not imposed for identification

since, otherwise, one would introduce unnecessary restrictions on the data.

Unfortunately, macroeconomists are severely constrained in their ability to sup-

port the estimation of impulse response functions with non-dogmatic prior beliefs on

their timing, persistence or shape. The computational convenience of working with

Vector Autoregressive models has been acknowledged in the literature (Kilian and

Lütkepohl, 2017). Yet, the existing practice of using a Minnesota-like prior in SVARs

does not allow a researcher to non-dogmatically introduce, even indirectly, appropri-

ate constraints on the impulse response functions. Beliefs on the shape of the impulse

responses can be naturally introduced in Moving Average (MA) models (Plagborg-

Møller, 2019). Yet, computationally, MA models are demanding to work with, and

may require approximation techniques (Barnichon and Matthes, 2018). An alternative

is to work with Local Projections models and impose priors directly on the coefficients

of the relevant shock at all horizons. However, an unresolved challenge in working

with the Bayesian version of Local Projections is the specification of a meaningful

covariance structure for the residuals (Ferreira et al., 2023).

The contribution of the paper. This paper proposes a prior structure for the

autoregressive parameters of SVAR models that contemporaneously achieves two goals.
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First, the moments of the prior can be selected so that the implied distribution on

IRFs is approximately centered around the values researchers select, with the second

moment determining the width of the prior IRFs intervals. Second, because it has

a Normal format, it retains the computational convenience of using highly tractable

posterior samplings. Thus, one can introduce non-dogmatic beliefs about features of

the impulse responses by simply replacing the Minnesota-like specification with our

proposed specification, which is obtained analytically from the recursive computation

of IRFs. Our prior is not designed for identification purposes and can be combined

with existing identification strategies, for example, zero restrictions, sign restrictions or

external instruments. It is also compatible with both the approach of Rubio-Ramirez

et al. (2010) and of Baumeister and Hamilton (2015), because it remains agnostic

about the prior specification on the contemporaneous impulse responses and/or the

structural elasticities.

There are four main advantages of our settings. It has been acknowledged that

Bayesian shrinkage is more naturally introduced on endogenous outcomes of the models

rather than on its parameters (see, for instance, Van Dijk and Kloek, 1980 and Harvey

et al., 2007). In the SVAR literature, priors on the endogenous outcomes of the

model are currently viable only when considering the unconditional properties of the

observables (see Villani, 2009 and Jarociński and Marcet, 2019). The first advantage

of our method is to allow for direct shrinkage of the impulse responses, which are

undoubtedly a key outcome of SVAR models (Kilian, 2022). A second advantage is

that, by leading the data to produce particular shapes, it can sharpen inference, even

when exact identification restrictions are not introduced. This offers an alternative

to the current practice of progressively tightening identifying restrictions when the

uncertainty about the IRFs remains large (Kilian and Murphy, 2012). The third

advantage is that the specification is flexible enough to introduce a combination of

tighter beliefs on some impulse responses and looser beliefs on others. Because the

SVAR jointly estimates all impulse responses at once, sharper inference can then be

obtained also for the dynamic responses of variables for which prior beliefs are loosely

formulated. Finally, our prior can be applied to a wide class of models including linear

Gaussian SVARs, linear non-Gaussian SVARs and nonlinear transition switching VARs

when computing impulse responses within or across states.

We illustrate the properties of our methodology using data simulated from a stan-

dard three-variable New Keynesian model. The model features a very persistent effect

of a government spending shock on the output gap. We show that in a sample of a
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realistic size, both a flat and a Minnesota prior, under either a white noise or a ran-

dom walk specifications, lead to posterior IRFs that largely underestimate the degree

of persistence of the output gap response. By contrast our prior, which allows for the

belief that the effect is relatively persistent, leads to posterior IRFs that mimic the

true responses, provided the prior variance is not too large. In addition, the prior

imposed on the responses of the output gap to a government spending shock sharpens

inference on the responses to all shocks, making credible sets uniformly smaller. We

discuss how to select the parameters of the prior specification and make it operational

in applied work. As expected, in a large sample the prior becomes irrelevant, and all

prior approaches lead to the same impulse response outcome.

We study how US output responds to a US monetary policy interventions. This

issue has received considerable attention over the last twenty years (Christiano et al.,

1999, Uhlig, 2005) but the shape of the output dynamics still remains unsettled in the

literature. We take a standard VAR model with six variables and identify the monetary

policy disturbances using sign restrictions on the impact effect of the shock. The flat

and the Minnesota prior lead to a posterior IRFs with exponentially declining shape

and no hump. When we impose the belief that monetary shocks generate temporary

but persistent effects on the variables of the model, a belief which is in line with a

wide class of current New Keynesian macroeconomic models, the posterior distribution

of real GDP responses displays hump-shaped dynamics, independently of degrees of

persistence imposed with our prior. More importantly, this occurs even though our

prior does not restrict responses to be hump-shaped.

Interestingly, our results indicate that it takes between one and one and a half year

for the monetary shock to generate its largest GDP effect. Quantitatively speaking,

a one standard deviation shock that increases the federal funds rate on impact by

20 basis points, leads to approximately a maximum decrease in real GDP of 0.20%.

Thus, our results support the widely-held view that a central bank may affect real

economic activity; but this occurs with long and variable lags, and the magnitude of

the response is generally small (Buda et al., 2023).

The relationship with the literature. There is a large literature on Bayesian VAR

models, see Koop and Korobilis (2010) and Miranda-Agrippino and Ricco (2019) for

a detailed discussion. We build on Baumeister and Hamilton (2015, 2018), who raised

academic attention on the benefit of explicitly introducing prior beliefs on the struc-

tural objects of interest. We extend their analysis by focusing on beliefs at longer hori-
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zons, and concentrating on non-dogmatic priors for autoregressive parameters rather

than on identifying restrictions. The paper is also related to the work of Barnichon

and Matthes (2018), who impose prior shape restrictions on the MA models, and to

an earlier contribution of Kociecki (2010), who works with recursive identification and

considers the case in which the prior on the impulse responses must be jointly Normal.

Our approach has the same flavour as the ones of Villani (2009) and Andrle and Benes

(2013), who construct priors for endogenous objects of a model. The need for tools

that explicitly introduce non-dogmatic beliefs on impulse responses was acknowledged

early on by Gordon and Boccanfuso (2001) and Dwyer (1998), who nevertheless do

not proceed to construct a prior for impulse responses. Our method is also compat-

ible with the approach by Arias et al. (2018), who provide a tool for combining sign

and zero restrictions. While we do not follow the method of Giacomini and Kitagawa

(2021), we acknowledge that a robust approach to sign restrictions can aid inference

also with our methodology.

The rest of the paper is organized as follows. Section 2 discusses in detail the prior

beliefs on impulse responses we propose in this paper. Section 3 illustrates the prop-

erties of our prior specification using simulated data. Section 4 studies how monetary

policy shocks are transmitted to real output. Section 5 concludes. An Online Ap-

pendix contains the derivations of the prior distribution for autoregressive coefficients

consistent with shape beliefs about impulse responses and the computational details

mentioned in the paper.

2 The empirical methodology

This section explains the specification of our prior. We then show that our prior can

be combined with commonly employed identification strategies to produce structural

analyses, and demonstrate that it is straightforward to employ standard posterior

algorithms to sample the objects of interest.
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2.1 The model

We write the Structural Vector Autoregressive (SVAR) model as

yt =

p∑
l=1

Πlyt−l + c+Bεt, (1a)

εt ∼ N(0, Ik), (1b)

where yt is a k×1 vector of observables, Πl is a k×k matrix of autoregressive reduced

form coefficients at horizon l = 1, .., p, c is a k×1 vector of constants, and B is a k×k
non-singular matrix. The vector εt contains the structural shocks, whose covariance

matrix is normalized to the identity matrix. The model can also be written in other

ways. A useful alternative is given by:

yt =

p∑
l=1

Πlyt−l + c+ ut, (2a)

ut ∼ N(0,Σ), (2b)

ut = Bεt, (2c)

Σ = BB′, (2d)

B = χ(Σ)Q, (2e)

where χ(.) is a function capturing any square root factorization of Σ, and Q an or-

thonormal matrix. Equations (1a)-(1b) and (2a)-(2e) define the same SVAR, while

equation (2e) highlights the correspondence between reduced form and structural rep-

resentations.

Let Ψh denote the impulse response function (IRF) h periods after the shocks,

and let M be the maximum horizon of interest. The mapping between SVAR objects

(B,Π1, ..,Πp) and IRF objects (Ψ0,Ψ1, ..,ΨM) can be obtained recursively, and for
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M ≥ p it is given by (Kilian and Lütkepohl, 2017):

Ψ0 = B, (3a)

Ψ1 = Π1Ψ0, (3b)

Ψ2 = Π1Ψ1 + Π2Ψ0, (3c)

Ψ3 = Π1Ψ2 + Π2Ψ1 + Π3Ψ0, (3d)

· · ·
Ψp = Π1Ψp−1 + Π2Ψp−2 + · · ·+ ΠpΨ0, (3e)

Ψp+1 = Π1Ψp + Π2Ψp−1 + · · ·+ ΠpΨ1, (3f)

· · ·
ΨM = Π1ΨM−1 + Π2ΨM−2 + · · ·+ ΠpΨM−p. (3g)

When B is non-singular, (3) provides a one-to-one mapping between the SVAR pa-

rameters (B,Π1, ..,Πp) and the IRF parameters (Ψ0,Ψ1, ..,ΨM), for any M ≥ p. Thus,

any prior beliefs on the SVAR parameters imply prior beliefs on the elements of the

IRFs via the system of equations (3). Notice that the system is highly nonlinear,

because of the cross products of Πl and Ψh, l = 1, .., p, h = 0, ..,M .

For the rest of the paper we make use of the following notation. Let Π = [Π1, ..,Πp]

be a matrix of dimensions k × kp. Vectorizing the matrices we have b = vec(B),

π = vec(Π). The parameters of the SVAR are then given by (π, c, B). Define H ≥
p the horizon until which the researcher is willing to introduce prior beliefs on the

impulse response where, generally, H ≤ M , since a researcher need not have prior

beliefs stretching as far as the horizon of interest. Furthermore, let ΨF = [Ψ1, ..,ΨH ],

Ψ = [Ψ0,ΨF ], ψ = vec(Ψ), ψF = vec(ΨF ) and ψh = vec(Ψh), for h = 0, 1, .., H.

Vectorizing the first H + 1 equations of the system (3) one obtains:

ψ0 = b, (4)

ψF = Rπ, (5)
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where

R = RH ⊗ Ik ≡



Ψ′0 0 0 . . . 0

Ψ′1 Ψ′0 0 .. 0

Ψ′2 Ψ′1 Ψ′0 . . . 0
...

...
...

. . .
...

Ψ′p−1 Ψ′p−2 Ψ′p−3 . . . Ψ′0
Ψ′p Ψ′p−1 Ψ′p−2 . . . Ψ′1
...

...
...

. . .
...

Ψ′H−1 Ψ′H−2 Ψ′H−3 . . . Ψ′H−p


︸ ︷︷ ︸

RH

⊗Ik. (6)

The matrix RH is a function of Ψ, it is of dimension Hk × pk, and is of full column

rank as long as B is non-singular.

2.2 Our proposed approach

Bayesian inference in SVAR models typically involves formulating prior beliefs on

p(π, c, B) = p(B) · p(π|B) · p(c|B,π). Because researchers frequently entertain prior

beliefs on Ψ, it is necessary to ensure that the selected p(π, c, B) imply a p(Ψ) in line

with such beliefs. This is not currently possible under the standard approach that

uses a Normal distribution for π ∼ N(µ, V ), where (µ, V ) are selected to produce a

flat prior, a random walk or a white noise prior process. For example, it is standard

in the literature to set (µ, V ) as follows:

E((Πh)ij) =

δi, j = i, h = 1

0 otherwise
, V ((Πh)ij) =


λ2

h2
, j = i

η λ
2

h2
σ2
i

σ2
j

otherwise
. (7)

A flat prior is obtained choosing λ to be large, while the random walk and the white

noise priors can obtained choosing δi to be 1 or 0, respectively (see Canova, 2007,

Bańbura et al., 2010 and Koop and Korobilis, 2010 for popular selections of the re-

maining hyperparameters). The random walk and white noise priors are frequently

referred to as the Minnesota-like prior for π, following the contribution of Doan et al.

(1984) and Litterman (1986).1 While the forecasting properties of these specifications

1The original Minnesota prior postulated a known and diagonal matrix Σ. Later extensions
combine the Normal prior on π specified as in equation (7) with an inverse-Wishart distribution for
Σ, possibly adding a Kronecker structure. We will refer to the Minnesota or Minnesota-like prior
only with reference to the prior for π, while remaining intentionally silent about the priors on B or
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have been well-documented, neither the flat nor the Minnesota-like prior for π allow

for flexibility in the specification of p(Ψ). The induced prior on Ψ can be derived

analytically, but its shape is constrained by the combination of the Normal prior, the

shrinkage assumptions (7), and the prior for B. We refer the reader to Section 3 and

Section 4 for an illustration of the prior on impulse responses induced by the Minnesota

specification.

Our approach focuses attention on p(π|B) while remaining agnostic about p(B)

and p(c|B,π). Let Ψ̄h, for h = 0, 1, .., H, be the prior mean value a researcher would

like to select for the impulse responses up to horizon H. As we will see, the mapping

provided by (3) allows for any Ψ̄h, h = 0, 1, .., H, to be transformed into a prior for

the autoregressive parameters of the structural VAR, given any p(B) and p(c|B,π).

Let ψ̄h = vec(Ψ̄h), ψ̄ = (ψ̄
′
0, ψ̄

′
F )′ = vec(Ψ̄), Ψ̄F = [Ψ̄1, .., Ψ̄H ], Ψ̄ = [Ψ̄0, Ψ̄F ]. Assume

that the prior p(B) implies E(B) = Ψ̄0 (more on this below). Define the artificial

random variables Wh, h = 1, .., H as

W1 = Π1Ψ̄0 − Ψ̄1, (8a)

W2 = Π1Ψ̄1 + Π2Ψ̄0 − Ψ̄2, (8b)

W3 = Π1Ψ̄2 + Π2Ψ̄1 + Π3Ψ̄0 − Ψ̄3, (8c)

...

Wp = Π1Ψ̄p−1 + Π2Ψ̄p−2 + · · ·+ ΠpΨ̄0 − Ψ̄p, (8d)

Wp+1 = Π1Ψ̄p + Π2Ψ̄p−1 + · · ·+ ΠpΨ̄1 − Ψ̄p+1, (8e)

...

WH = Π1Ψ̄H−1 + Π2Ψ̄H−2 + · · ·+ ΠpΨ̄H−p − Ψ̄H . (8f)

The system of equations (8) is closely related to the system (3) except that it drops the

equation at horizon 0, replaces the matrices Ψh with the matrices of hyperparameters

Ψ̄h, h = 1, .., H, and drops the last M−H equations. The system (8) can be vectorized

as

w = R̄π − ψ̄F , (9)

where w = vec([W1, ..,WH ]) and R̄ is defined in equation (6) after replacing Ψ with

Ψ̄. If Ψ̄0 is non-singular (which we assume), the matrix R̄ has full column rank.

Σ.
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Premultiplying both sides of (9) by R̄′ and rearranging the terms gives:

π =
(
R̄′R̄

)−1
R̄′w +

(
R̄′R̄

)−1
R̄′ψ̄F . (10)

Since π is of lower dimension than w for H > p, the system of equations (9) is not

necessarily consistent. Put it differently, given (R̄, ψ̄F ), whether a solution for π exists

depends on the value of w.

Our prior on π is a Normal and it is specified as follows

π|B ∼ N
(
µ, V (B)

)
, (11)

µ =
(
R̄′R̄

)−1
R̄′ψ̄F . (12)

The rationale behind (12) comes from the system of equations (9). When H = p

(which we refer to in the text and the Online Appendix as Case a), then a VAR

with p lags can replicate exactly the pattern in Ψ̄, making the system (9) consistent

for w = 0. This means that (12) is the unique solution, and E(π) simplifies to

µ = R̄−1ψ̄F , since R̄ is squared and invertible. When H > p but Ψ̄ is selected such

that it can be replicated by a VAR with p lags (Case b), then the system (9) is still

consistent for w = 0 and (12) is still its unique solution. Lastly, when H > p but no

parametrization of a VAR with p lags exists that replicates Ψ̄ (Case c), then w = 0

makes the system (9) inconsistent. Yet, E(π) from (12) is still the unique solution if

w = [R̄
(
R̄′R̄

)−1
R̄′ − I]ψ̄F .

The covariance matrix of our prior is, for the moment, left unspecified. We remain

flexible about V (B) to allow a researcher to freely select it in a way that potentially

depends on B. For example, for computational purposes, one can impose a Kronecker

structure and set

V (B) = VH ⊗BB′. (13)

where VH mimics the structure of a Minnesota prior covariance matrix.

It is immediate to note that our prior selection replaces the arbitrary Minnesota

choice of µ with an endogenous selection that depends on Ψ̄. It is harder to see, but

not difficult to prove, that our prior choice implies convenient properties on the prior

distribution of Ψ. Assume, without loss of generality, that p(B) implies E(B) = Ψ̄0.

Section 1 in the Online Appendix proves that under Case a and Case b the following
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results hold:

E(Ψh) = Ψ̄h, h = 0, 1, (14a)

lim
V (B)→0

E(Ψh) = Ψ̄h, h = 2, .., H. (14b)

In words this means that it is possible to specify a Normal prior distribution on Π

that implies a prior on the IRFs approximately centered around Ψ̄. An appropriately

chosen V (B) gives researchers control on the width of the credible intervals on Ψ,

while guaranteeing that E(Ψh) ≈ Ψ̄h, for h = 2, .., H. Recall that Case a requires

H = p, a condition that can be easily satisfied given that p is a free parameter in our

setting. We stress also that under Case c the approximation error E(Ψh) − Ψ̄h can

still be small, and its size can be checked numerically depending on the application

and on the values of Ψ̄ used. While equation (14b) is based on the limiting behavior

of our prior, all of our simulations and applications suggest that the approximation is

very satisfactory, making the methodology suitable for applied work.

2.3 Discussion

A key advantage of our approach is that it does not require deriving and integrat-

ing the joint prior distribution of Ψ implied by our prior, a procedure that entails

complex computation techniques. Instead, our analysis only requires working with

the expectation operator of a multivariate system of equations, see Section 1 of the

Online Appendix. This is a considerable advantage relative to the existing contribu-

tions that work with the transformation between the SVAR and the impulse response

parametrization (Kociecki, 2010, Arias et al., 2018).

Because our approach leaves p(B) unrestricted, it can be combined with a num-

ber of identification strategies. One can specify the model as in equations (2a)-(2e)

and work with an inverse-Wishart-Uniform prior distribution on (Σ, Q), possibly re-

stricted to imply a combination of zero and sign restrictions on B or on A = B−1

(Rubio-Ramirez et al. (2010) , Binning, 2013, Arias et al., 2018). One can also form

a prior directly on A (as advocated by Baumeister and Hamilton, 2015, Baumeister

and Hamilton, forthcoming), on B (as suggested by Bruns and Piffer, 2023) or on a

combination of A and B (see Baumeister and Hamilton, 2018). In all cases, setting

Ψ̄0 = E(B) ensures that Ψ̄ is compatible with p(B). Identification via external instru-

ments can also be used by adding the instrument as the first variable in a recursive
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SVAR as in Plagborg-Møller and Wolf (2021) and the specification can be extended to

the VARX setting used by Paul (2020). Longer horizon identification restrictions can

be introduced using an accept-reject algorithm, as in Uhlig (2005). Section 4 shows

that doing so with our approach is computationally less demanding than with a flat or

Minnesota-like priors, because our prior distribution already encourages the selected

signs over multiple horizons. This significantly reduces the number of draws that are

rejected by the algorithm, facilitating posterior sampling and computations in general.

It is common to estimate SVAR models and study only the dynamics induced by

a subset of structural shocks. Our approach is compatible with this strategy. One

way to achieve this is to work with a prior distribution p(B) that features a wide

variance for the shocks that are not identified and a tighter variance on the shocks

that are identified. In this case, equations (3) imply very wide prior beliefs on the

impulse responses associated with the non-identified shocks, making the selection of

Ψ̄ for such shocks irrelevant. The prior distribution proposed by Bruns and Piffer

(2023) is suitable for this purpose, as it treats each entry of B as independent Normal

distributions, potentially truncated to be positive or negative.

Our prior on π is Normal. For this reason, posterior sampling is not in any

way more challenging than with existing methodologies, as the conditional poste-

rior p(π|Y,B) remains Normal. An inverse-Wishart-Uniform prior on (Σ, Q) leads to

a posterior that can be explored using standard methods: a Gibbs sampler or direct

sampling, depending on whether V (B) is restricted to have a Kronecker structure as in

equation (13) or not. If a more general prior p(B) is used, posterior sampling requires

a more involving method for computing the marginal posterior p(B|Y ), for example

a Metropolis-Hastings algorithm as in Baumeister and Hamilton (2015), the two-step

algorithm as in Bruns and Piffer (2023), or the methods in Canova and Pérez Forero

(2015) and Waggoner et al. (2016). All in all, our setup provides flexibility on the

specification of the prior distribution on the impulse responses at no additional com-

putational cost.

It is common in the literature to assess the “goodness” of a prior specification

using the forecasting performance of the posterior. We warn against using such an

exercise when the scope is structural analysis for at least two important reasons. First,

forecasting and structural performance are not two sides of the same coin. For example,

suppose there are two shocks in the data, one that explains 90 percent and one that

explains 10 percent of the variance of inflation. Suppose that one is interested in

the dynamics induced by the latter shock. Good forecasting performance for inflation
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requires proper identification the former shock and capturing well the dynamics it

induces. But a prior that is tailored to that purpose will not be able to tell us much

about the dynamics in response to the second shock. To put this result differently, a

good forecasting performance is neither a necessary nor a sufficient condition for good

structural inference. By the same token, a prior that flexibly accommodates prior

beliefs on certain impulse responses need not have good forecasting performance, but

this should not be considered a defect.

Second, SVARs often suffer from deformation problems, see Canova and Ferroni

(2022). Because systems tend to be small, structural shocks may be confounded,

making structural analysis typically biased. Still, deformed systems may have good

forecasting performance as long as enough lags are used. Thus, one may be able to

produce decent forecasts even when the structural model is misspecified and the dy-

namics in response to the shocks distorted. For these reasons, we find it inappropriate

to judge a prior specification, which is specifically designed for structural objects, using

the forecasting performance of the implied posterior model. If anything, introducing

prior beliefs consistent with the true response of a structural shocks in a deformed

system increases the ability of the posterior distribution to reflect some true features

of the shock, despite the misspecification present in the model.

It is also useful to draw a short comparison with the approaches of Villani (2009)

and Andrle and Benes (2013). Villani (2009) writes the VAR system in deviation

from the steady states and designs priors for the steady states, which are endogenous

functions of the VAR coefficients. These priors imply, in turn, a prior specification

for the VAR coefficients. Our approach works the other way around: we impose prior

restrictions on the VAR coefficients that represents certain prior beliefs on the IRFs.

Andrle and Benes (2013) provide priors for endogenous objects of a structural (DSGE)

model, such as the sacrifice ratio. These priors imply, in turn, priors on the structural

parameters of the model that enter the functions of interest. The main difference here

is that a DSGE model rather than a VAR model is used in the exercise.

Our prior is also related to Jarociński and Marcet (2019) who propose to formulate

a prior directly on observable variables instead of the parameters of the VAR. They

rightly point that it is usually hard to come up with genuine prior for VAR parameters.

In addition, priors for the VAR parameters may imply priors for observables that

are hard to defend, for example, huge future yearly output growth. To address this

problem, they develop a framework for translating the prior for observables into a prior

for VAR parameters which is in line with truly subjective prior beliefs. Similarly, our
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approach starts from the premise that researchers are more comfortable specifying

their prior beliefs on impulse response functions rather than VAR parameters. Hence,

our method can be seen as complementary to the one by Jarociński and Marcet (2019)

and useful in different contexts.

2.4 The specification of (Ψ̄, V (B))

To make our approach operational we need to select (Ψ̄, V (B)). We found it convenient

to set the entries of Ψ̄ using the Gaussian basis functions

ψ̄ij,h = aij · e
−
(

(h−bij)
2

cij

)
+

b2ij

c2
ij , (15)

where aij captures the impact effect of shock j on variable i, and is set equal to

the i, j entry of E(B). bij is an integer scalar, pinning down the horizon at which

the peak effect is reached, and equals 0 when no hump-shaped response is desired.

When bij > 0, cij can be freely set to control for how much higher the peak effect

is (in absolute value) relative to the impact effect, while for bij = 0, cij controls the

horizon at which the impulse response reaches the half-life relative to the impact effect.

Equation (15) re-parametrizes the function used in Barnichon and Matthes (2018) to

ensure that the impact effect of the impulse response is a free parameter, as this is

needed to make Ψ̄0 coincide with E(B).

V (B) can be set freely to indirectly control for the uncertainty in the prior be-

liefs on the impulse responses. We found it convenient to select V (B) as with the

Minnesota-like prior, hence achieving the same dimensionality reduction to a handful

of hyperparameters, see equation (7). We propose to select λ adaptively, as discussed

in detail in Section 3. Alternatively, with equation (13) in hand, one can also use a

hierarchical or an Empirical Bayes approach for setting the elements of V (B), as in

Giannone et al. (2015). We do not follow this approach, because the update in the

hierarchical method by Giannone et al. (2015) is driven by the forecasting properties

of the model, which we view as conceptually separate from structural analysis. We

stress that our methodology is compatible with alternative selections of (Ψ̄, V (B)).

Our setup nests a Minnesota-like prior selection of (µ, V ) as a special case. As

mentioned V (B) can be set as with the Minnesota-like prior. As for µ, the random walk

prior, corresponding to δi = 1 in equation (7), can be obtained by setting Ψ̄h = Ψ̄0,

h = 1, .., H, H = p and the white noise prior, i.e. δi = 0, can be obtained by setting
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Ψ̄h = 0, h = 1, .., H, H = p. Thus, when λ is sufficiently small, the Minnesota-like

selection given in (7) is consistent with the belief that the responses to the structural

shocks are either very persistent (the random walk prior) or not persistent at all

(the white noise prior). In contrast, our prior offers more flexibility as intermediate

persistence cases are possible and shape beliefs of any form can be introduced non-

dogmatically.

3 The features of our prior with simulated data

We illustrate the properties of our prior specification using data simulated from a

stylized small-scale DSGE model. We build on the three-variable New Keynesian

model by An and Schorfheide (2007). The model has three variables: the output

gap, inflation, and the interest rate, and their dynamics are driven by three structural

shocks: a TFP shock, a monetary policy shock and a government spending shock. We

calibrate the parameters of the DSGE model as in An and Schorfheide (2007). As

the model is stationary, simulations are started from the unconditional mean, and we

discard the first 100 observations. We then generate two datasets with 100 and 1000

observations, plus 50 observations used as training sample.

We estimate four SVAR models, which are identical except for the specification for

π. All models include 4 lags and a constant, on which we use a flat prior centered

at zero. While adding p > 1 lags introduces a misspecification to the model relative

to the data generating process, it helps the visual illustration of our prior, without

affecting the results we present (see discussion below). For simplicity, we use an inverse-

Wishart-uniform prior for (Σ, Q) and identify the three shocks by sign restrictions on

impact. The restrictions are consistent with the true impact responses embedded in

the model; thus no misspecification in the identification of shocks is present. The

discussion below focuses on the responses to a government spending shock. In the

model, this disturbance induces no response in the interest rate and in inflation. Hence,

we introduce no restrictions for the corresponding entries of B.

We use prior independence between π and Σ, hence no Kronecker structure on

V (B) is introduced. The first model uses a flat prior on π. The second and third

model use a Minnesota prior on π, setting the prior mean to reflect either a white

noise or a random walk. We set the covariance matrix of the Minnesota prior as

discussed in Canova (2007), which implies a relatively uninformative prior choice. For

our prior we select Ψ̄ so as to reproduce as close as possible the shape of the true
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Figure 1: Posterior distribution, T=1000
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Note: Pointwise 68% credible sets corresponding to the flat prior (solid lines), to the white noise
Minnesota prior (dashed lines), to the random walk Minnesota prior (dotted lines), and to our
prior (blue shaded area). The dataset includes T = 1, 000 observations. The responses correspond
to a one standard deviation shock.

impulse responses. We study impulse responses up to 18 horizons, and specify the

prior mean on the impulse responses up to H = 4 horizons. Because H = p, the setup

coincides with Case a discussed in Section 2.2. We specify Ψ̄ as in equation (15). We

set aij equal to the ij entry of E(B), as discussed in Section 2.3. We set bij = 1 for

i = 1, j = 1 and zero otherwise, to capture the true timing of the peak effects of the

responses. Last, we set cij to capture the true half-life of the responses. As for the

variance, we set V (B) as under the Minnesota prior.

For our prior, λ is chosen adaptively. As discussed in Bruns and Piffer (2023),

equation (2d) implies the constraint −
√

Σii < Bij <
√

Σii. We estimate
√

Σ̂ii using,

for each dataset, the training sample with the first 50 observations. We take γi =

[−2·
√

Σ̂ii, +2·
√

Σ̂ii] to be a reasonable bound for the dynamics of the vector of impulse

responses over the first 18 horizons, which are the horizons of interest for the impulse

response. We start from λ = 0.01 and progressively increase it until between 5% and
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10% of the joint prior probability lies outside of the chosen interval, irrespectively of

the variable, the shock, and the horizon. This ensures an appropriately informative

yet non-dogmatic prior. The search algorithm delivers a baseline λ = 0.04491, which

is in line with the selection by Bańbura et al. (2010) for a medium/large VAR model.

Section 2 in the Online Appendix provides the details on the iterative procedure used

for selecting λ.

Figure 2: Posterior distribution, T=100
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Note: Pointwise 68% credible sets corresponding to the flat prior (solid lines), to the white noise
Minnesota prior (dashed lines), to the random walk Minnesota prior (dotted lines), and to our
prior (blue shaded area). The dataset includes T = 100 observations. The responses correspond
to a one standard deviation shock.

Figure 1 reports the pointwise 68% credible sets of the posterior IRFs associated

with the four priors when T=1000. The dotted line displays the true impulse responses.

The posterior distribution p(B|Y ) is similar across prior specifications, and the true

value of the instantaneous response of output gap to the government spending shock

lies in the right tail. The figure shows that all four prior selections underestimate the

impact effect of the government spending shock to the output gap, although we stress

that the reported credible sets are 68% bands. Our analysis centers on the ability to
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correctly infer the true persistence of the responses, rather than the correct impact

effect. At longer horizons, no material difference emerges, as all four specifications

correctly capture the strongly persistent nature of the true response. This result

is driven by the fact that, in large samples, Π is identified from the data. Hence,

differences in prior beliefs asymptotically vanish.

Figure 3: Prior beliefs
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Note: Pointwise 68% credible sets associated with the white noise Minnesota prior (continuous
lines) and our prior (shaded area). The red diamonds show Ψ̄ used as our prior, which was
specified setting H = p = 4.

The results differ in a small sample. Figure 2 shows that when T = 100, an

important difference emerges in the posterior distribution of the IRFs associated with

either the flat and the random walk and white noise Minnesota priors on the one

hand, and our prior on the other. The first three specifications strongly underestimate

the persistence of the output gap responses to the government spending shock. They

find that the half-life of the response is about 2-3 quarters while the true half life

is 18 quarters. Our prior, instead, leads to posterior IRFs that approach the true

IRFs. This holds not only for the response of output gap to the government spending

shock, but also, for example, for the response of inflation to the TFP shock and to the
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monetary policy shock. Thus, as mentioned earlier, shape restrictions on one impulse

response may be beneficial for other impulse responses.

Figure 3 interprets the results by plotting the prior distributions underlying Fig-

ure 2. The dotted line shows the values of Ψ̄, which was specified up to horizon

H = p = 4. The corresponding expected value of Π computed using µ = R̄−1ψ̄F is

E(Π1) =

0.960 0.006 0.299

0.005 0.967 −1.244

0.000 0.007 0.776

 , E(Π2) =

−0.173 0.000 0.106

0.007 −0.032 −1.721

0.000 −0.003 −0.177

 ,

E(Π3) =

−0.053 −0.004 −0.013

0.001 0.015 −0.508

0.000 −0.004 0.006

 , E(Π4) =

−0.001 −0.002 −0.038

−0.002 0.019 −0.002

0.000 0.001 0.010

 .

The credible intervals shown in the shaded area in Figure 3 are obtained by draw-

ing from the joint prior distribution p(π, B) and computing the associated impulse

responses up to horizon 18.

The figure confirms that it is possible to work with a Normal prior for π and

calibrate its moments to imply a prior on the vectorized impulse responses centered

around the desired trajectory. Our prior introduces beliefs that are, by construction,

in line with the persistence of the response. The results hold also when H = 1. How-

ever, such a choice implies that Ψ̄ in Figure 3 is very short, making the illustration less

informative. The grey dashed lines in Figure 3 show that the white noise Minnesota

prior indirectly encourages no persistence in the impulse responses. Assessing what

the flat prior introduces on impulse responses is not possible, while results available

on request indicate that the random walk Minnesota prior introduces very unstable

and large credible bands. The similarity documented by Figure 2 in the posterior

distributions associated with the flat prior and both specifications of the Minnesota

prior indicate that these priors are relatively uninformative, leading to the posterior

distribution being strongly affected by the sample estimate. Since the latter underes-

timates the true persistence of the output gap to the government spending shock in

the sample by roughly 30%, one fails to measure the true persistence of the response.

It is typically suggested that a relatively wide prior variance on the object of interest

should be used “to let the data speak”. We find that this is not necessarily the case

when performing structural analyses. Increasing λ makes the prior less informative.

However, as the prior loses its informational shape content, it becomes less useful
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Figure 4: Increase in prior variance

0 6 12 18
0

0.05

0.1

0.15

0 6 12 18
0

0.05

0.1

0.15

0 6 12 18
0

0.05

0.1

0.15

Note: The figure reports the effect of a government spending shock on the output gap, together
with pointwise 68% credible sets associated with our prior as λ increases. The dotted line reports
the true impulse response. The prior is represented by the dashed line, the posterior by the
shaded area.

when one wants to answer questions such as what is the persistence of a response.

As shown in Figure 4, when λ increases the posterior IRFs obtained with our prior

approaches the posterior IRFs associated with the Minnesota and the flat priors. As

a consequence, the posterior now fails to capture the true persistence effect in a small

sample.

4 The output effects of monetary policy shocks

There is a large literature quantifying the effects of monetary policy shocks on the

real economy (see Christiano et al., 1999 and Miranda-Agrippino and Ricco, 2021

among many others). One key question often discussed in the literature is whether

the monetary policy intervention generates its strongest effects on impact, or whether

long and variable lags imply that the largest response occurs with a delay (Buda et al.,

2023). This question is relevant in the policy debate, given that it directly informs

central bankers about their ability to quickly stimulate the real economy when needed.

We use our prior methodology to study how long it takes for a US surprise monetary

intervention to affect US real economic activity. We use a SVAR model with six

variables: real GDP, the GDP deflator, the commodity price index, total reserves,

nonborrowed reserves, and the federal funds rate. All variables enter in log except
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for the federal funds rate. The data is monthly, and real GDP and the GDP deflator

are interpolated using either industrial production data or the consumer price and the

producer price indexes. The set of variables used is common in the literature and is

consistent with the work of, e.g., Bernanke and Mihov (1998), Uhlig (2005) and Arias

et al. (2019). Following Arias et al. (2019), we use the data in the period 1965M1

through 2007M6, in a VAR with 12 lags and a constant. As in Arias et al. (2019) and

others in the literature, our sample stops before the Great Financial Crisis.

We identify the monetary policy shock via sign restrictions: we assume that an

increase in the policy rate decreases on impact all variables. Thus by construction,

real GDP decreases on impact in response to a contractionary monetary policy sur-

prise. The key question is whether the effect of the monetary policy disturbance is

largest on impact or whether real GDP further decreases, displaying a hump. For

the remaining shocks no restrictions are imposed, except the normalization that the

diagonal entries of B are positive. We use an inverse-Wishart-uniform distribution on

(Σ, Q), estimating in the training sample (the first 20% of the observations) the hy-

perparameters of the inverse Wishart, as suggested by Kadiyala and Karlsson (1997).

While we agree with Baumeister and Hamilton (2015, 2018) that explicit prior distri-

butions can be expressed directly on structural parameters of interest, we employ the

indirect inverse-Wishart-Uniform prior for computational convenience. We stress that

the contribution of our paper concerns π rather than (Σ, Q) or B, making the actual

prior on these parameters less crucial, see also Inoue and Kilian (2020) for a discussion

on the importance of prior distributions in structural analysis.

Figure 5 shows the posterior impulse responses to a one standard deviation shock

for two alternative prior specifications of π: the flat and the Minnesota-like priors. We

use a conjugate specification for the latter, setting the mean of π to reflect a random

walk for all variables and setting the variance of π as in Kadiyala and Karlsson (1997).

We report the pointwise median response together with the 68% and the 90% credible

sets. The figure shows that when prior beliefs are represented by these two priors, the

largest (in absolute value) posterior real GDP response is on impact. The IRFs revert

back to zero within less than a year and display no hump.

Would the conclusions change if one introduces prior beliefs on the shape of the

impulse responses? We do not assume humped-shaped beliefs on response of any of

the variables to avoid leading the results in this direction, even indirectly. Instead, we

assume that monetary policy shocks generate persistent but temporary effects. This

view is consistent with a large amount of evidence. We stress that this belief is not
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Figure 5: Posterior IRFs: the Flat (top) and Minnesota (bottom) priors
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Note: Pointwise median as well as 68% and 90% credible sets. The responses correspond to a
one standard deviation shock.

imposed dogmatically, and can be updated by the data if it wants to do so. As with

the other two cases, we use a flat prior for the constant, centered at zero.
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Figure 6: Our approach: Ψ̄
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Note: The thick blue line reports Ψ̄. The black dashed and dotted lines show the value of the
impulse responses associated with a VAR model with l lags parametrized as implied by {Ψ̄h}lh=0,
with l = 2, 6, 12.

We make our prior beliefs operational as follows. For all variables, we specify Ψ̄

using (15), setting H = 36. We set bij = 0, ∀ i, j, and cij to allow for different

degrees of persistence of the response to the shock. The baseline case assumes that

it takes 8 months for the effects of the monetary shock to reach half of the impact

response. We introduce the same beliefs across all variables and in response to all

shocks for convenience, although the methodology does not require such a restriction.

Since we do not introduce functional restrictions on Ψ̄, a VAR with p = 12 lags need

not replicate the dynamics of Ψ̄ up to H = 36 horizons, and results (14b) do not hold

exactly (this is Case c in Section 2.2). Figure 6 reports the IRFs associated with a

VAR(l) with l = 2, 6, 12 parametrized as implied by {Ψ̄h}lh=0, when l = 2, 6, 12 (see

equations (10) in the Online Appendix). Clearly, a VAR with 6 lags does a great

job in approximating Ψ̄, and p = 12 implies negligible approximation errors. As for

the covariance matrix, we specify V (B) as in equation (13). VH is set as with the

Minnesota prior, and we select λ adaptively. We start the algorithm at λ = 0.005 and
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Figure 7: Our approach: prior (top panel) and posterior (bottom panel)
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Note: The top panel reports Ψ̄ (dotted line), the pointwise 68% and 90% prior credible set
(shaded areas), and the same set when only prior uncertainty in B is present (solid lines). The
bottom panel shows the pointwise median as well as the pointwise 68% and 90% credible sets.
The responses correspond to a one standard deviation shock.
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increase λ until the joint prior distribution associated with the monetary policy shock

leaves between 5% and 10% outside of ±2 ·
√

Σ̂ii for the first H = 36 horizons, with√
Σ̂ii estimated in the training sample (see the discussion in Section 3). The search

produces a value of λ = 0.0331.

Figure 7 shows the prior (top panel) and the posterior (bottom panel) impulse

responses to a one standard deviation shock associated with our setup. The dotted

line in the top panel is Ψ̄, while the shaded areas report the 68% and the 90% credible

sets associated with our prior. The solid lines report the 68% and 90% credible sets

obtained with only prior uncertainty in B, setting λ = 0. This helps to understand the

implications of a relatively tight prior on π. As should be expected, prior uncertainty

is largely driven by p(B) at shorter horizons, while the prior variance of π becomes

relevant at longer horizons. The top panel shows that indeed the prior distribution is

well centered around Ψ̄, as should be expected. It also shows that the prior does not

induce any hump-shaped dynamics.

The bottom panel of Figure 7 reports the posteriors. The one standard deviation

monetary contraction leads to an impact median increase in the federal funds rate

close to 20 basis points. The monetary contraction generates an impact decrease in

the commodity price index by around 1 percent and an impact decrease in output

by 0.12 percent. As for the dynamics, the interest rate reverts back within a year,

while real GDP and the commodity price index further decrease displaying a hump-

shaped response. The monetary contraction leads to a strongest effect on real GDP

of 0.2 percent, which materializes one year after the shock. Contrary to the case from

Figure 5, real GDP does not display the strongest response on impact. We stress that

posterior uncertainty remains wide, in a way that is quantitatively similar to when

using the Minnesota or the flat prior.

Next, we assess the sensitivity of the results to alternative prior specifications

on the timing of the impulse responses. Figure 8 shows that the results are robust to

alternative selections of Ψ̄ that imply faster or slower responses to the monetary policy

shocks (we set the half-life of the effects on all variables to 4, 6, 10 or 12 months). All

prior beliefs lead to conclude that real GDP responds with a hump. The maximum

effect occurs between a year and a year and a half, but never before one year or after

one year and a half. This result thus supports the widely-held view that it takes

time for the central bank to affect the real economy and that long and variable lags

constrain its ability to affect output.

Our prior also has implications for the stationarity of the VAR model. We found
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Figure 8: Response of real GDP (robustness)
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Note: The dotted line in the left column represents Ψ̄, the solid lines in the right column represents
the pointwise median. Shaded areas represent pointwise 68% and 90% credible set for the prior
and the posterior.

that 70% of the posterior draws associated with the Minnesota prior lead to a compan-

ion form with the maximum eigenvalue above 1. This number decreases to between

30% and 44% with our prior, depending on the half-life value used. Complex eigen-

values did not appear in either case. Table 1 reports how many posterior draws were

needed to store 100,000 draws that satisfied sign restrictions at horizon 0 (baseline

analysis), at horizons 0 and 1, and so on up to horizon 4. When sign restrictions are

introduced only on impact, the computational cost is approximately the same with
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Table 1: Computational burden as restrictions are introduced on higher horizons

up to horizon Minnesota Our prior
0 2,030,062 21m03s 1,868,909 22m18s
1 3,173,015 32m45s 2,171,074 26m53s
2 6,638,708 1h6m51s 2,438,543 30m44s
3 12,969,568 2h14m33s 2,686,903 37m15s
4 26,533,676 4h34m33s 2,912,228 40m30s

Note: The table reports how many posterior draws were needed to store 100,000 that satisfy the
sign restrictions, which were introduced up to horizon h = 0, .., 4. It also reports computations
times. All codes are run on Matlab on a computer with an Intel i7-7700K 4.2GHz Quad Core
processor and 64 GB RAM.

the Minnesota prior and with our prior. When sign restrictions are also introduced at

higher horizons it becomes computationally more demanding to work with the Min-

nesota prior. By contrast, the computational cost under our prior barely changes.

Thus, our prior choice can significantly reduce the computational burden when sign

restrictions are introduced at longer horizons.

5 Conclusions

Bayesian VAR models are frequently used to estimate impulse response functions to

structural shocks of interest. This paper develops a tractable prior distribution for

SVAR coefficients that achieves two goals. First, it allows for an explicit introduction

of prior beliefs on the shape of the impulse responses. Second, it does so by working

with a Normal prior distribution which, in turn, ensures tractable posterior sampling.

We develop the methodology and illustrate its properties using simulated data

from a small scale DSGE model. We use this simulation exercise to show how the key

hyperparameters of the prior can be specified. We then use the prior we suggest to

investigate how long it takes for a monetary policy shock to generate its strongest effect

on real GDP. We show that the popular flat and Minnesota priors lead to posterior

IRFs that features no hump-shaped response of real GDP. By contrast, our prior,

which is set to mimic the belief that monetary policy shocks generate persistent yet

temporary effects on the economy, leads to a posterior that features a hump-shaped

response of real GDP. We also estimate that it takes between one year and a year and

a half to obtain the maximum effect on output.
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Canova, F. and Pérez Forero, F. J. (2015), ‘Estimating overidentified, non-recursive,

time varying coefficients structural VARs’, Quantitative Economics 6(2), 309–358.

Christiano, L. J., Eichenbaum, M. and Evans, C. L. (1999), ‘Monetary policy shocks:

What have we learned and to what end?’, Handbook of Macroeconomics 1, 65–148.

Doan, T., Litterman, R. and Sims, C. (1984), ‘Forecasting and conditional projection

using realistic prior distributions’, Econometric reviews 3(1), 1–100.

Dwyer, M. (1998), ‘Impulse response priors for discriminating structural vector au-

toregressions’.

Ferreira, L. N., Miranda-Agrippino, S. and Ricco, G. (2023), ‘Bayesian local projec-

tions’, The Review of Economics and Statistics pp. 1–45.

Giacomini, R. and Kitagawa, T. (2021), ‘Robust Bayesian inference for set-identified

models’, Econometrica 89(4), 1519–1556.

Giannone, D., Lenza, M. and Primiceri, G. E. (2015), ‘Prior selection for vector au-

toregressions’, Review of Economics and Statistics 97(2), 436–451.
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