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ainen, John Wooders, Takuro Yamashita, Lassi Ahlvik, an editor and two anonymous reviewers, and the

audiences in Helsinki GSE applied micro and lunch seminars, CoED 2013 (Lund), EARIE 2014 (Milan),

and SAET 2017 (Faro) for helpful comments at different stages of writing this article. I thank OP Group

Research Foundation and Finnish Cultural Foundation for financial support. Any shortcomings are my

own.

1



1 Introduction

Asset markets are large and global. Trades are regularly executed over-the-counter in

multiple decentralized exchanges. Some assets are clearly “lemons” as defined by Akerlof

(1970), e.g., a traded firm might have issues with information security or customer man-

agement, just waiting to surface. However, even these assets often generate positive value

for their owner, new trade opportunities arrive continuously, and buyers can inspect assets

before trading. Indeed, the law requires due diligence in acquisitions and caveat emptor

applies.

How do such decentralized markets with informative signals fare? Will the lemons

problem resolve on its own with time, i.e., does the market settle to an efficient equilib-

rium? Or, will the payoff limits remain Walrasian (as suggested by, e.g., Gale (1986a,b,

1987); Serrano (2002), and Moreno and Wooders (2002, 2010, 2016))? What are the ef-

fects of frictions and the information content of signals on market performance? Which

dynamic trade patterns, as characterized by Kaya and Kim (2018), are sustained in the

long run?

In this article, we reply to these questions by investigating the effect of signals in a

decentralized lemons market, where (i) traders are small, numerous and anonymous, (ii)

trade frictions are vanishingly small, and (iii) trading has settled to a stationary equi-

librium.1 The setup adheres loosely to the seminal model of dynamic trade by Moreno

and Wooders (2010): asset sellers enter the market with different asset qualities, meet

a sequence of random buyers, and exit the market upon trading. To follow the current

standard practice in the literature, we embed this model kernel in a continuous time en-

vironment. Moreover, to incorporate asset information in the model, we also introduce

the assumption that a buyer can obtain a signal of a seller’s asset quality before making

the seller a price offer. This provides an updated version of canonical models for decen-

tralized trade2 where traders face not only a constant flow of trade opportunities, as in

the previous literature, but also an incessant flow of asset information. The approach

emulates information-abundant financial markets.

We establish new efficiency results for this formerly neglected class of markets that has

more recently garnered great interest from financial economists.3 In particular, this article

observes that all key properties of an equilibrium – existence, efficiency, and dynamics

– derive from the screening intensities of different asset qualities, i.e., the difficulty of

obtaining a high price offer for low quality versus high quality. In the model, signal

distributions differ between sellers, i.e., a lower signal suggests a lower asset quality. As a

1This case is particularly interesting as the decentralized counterpart of the Walrasian equilibrium;
Gale (1986a,b, 1987); Rubinstein and Wolinsky (1985) and Binmore and Herrero (1988).

2See Wolinsky (1990); Serrano and Yosha (1993, 1996); Blouin and Serrano (2001); Blouin (2003)
3For examples of recent high impact work, see Rostek and Yoon (2021) for imperfectly competitive

trade and Azevedo and Gottlieb (2017) for perfect competition and adverse selection.
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result, it is possible for buyers to screen the quality of assets by offering high prices only

for high enough signals. Furthermore, assuming that signals are sufficiently informative

relative to frictions of trading, low quality can be screened more strongly than high as

frictions become negligible. To equate the costs of waiting with those of paying too much,

a buyer could thus make obtaining a high price offer, e.g., either equally hard for both

qualities, or infinitely harder for low quality. This insight permits us to characterize

stationary equilibria by focusing on screening.

Our first main result is that a market settles to an efficient stationary equilibrium

for an extensive range of parameter values as trade frictions disappear. The range is

partly characterized by the severity of the lemons problem and partly by the relative trade

surpluses among different asset qualities, which is novel. Specifically, we show that an

efficient limit equilibrium exists (i) if the trade surplus of low quality is larger, i.e., if

∆l ≥ ∆h, or (ii) if the static lemons problem is not severe, i.e., if ∆h ≥ ∆g; ∆l (∆h)

denotes the surplus of trading low (high) quality assets and ∆g the gap between the

value of buying low quality and selling high quality. As it turns out, efficiency hinges

on adjusting screening to market conditions: In the former case (i), trade dynamics are

standard (low quality trades faster) and the screening intensity of low quality is strong

enough to make the seller accept a low price and not wait for a high signal. In the

latter case (ii), trade dynamics are reversed (high quality trades faster) and the screening

intensities of both qualities stay relatively low, encouraging a low quality seller to wait for

a high price offer. Our efficiency results contrast with the persistence of trading problems

in the literature (e.g., Blouin and Serrano (2001); Camargo and Lester (2014); Guerrieri

and Shimer (2014); Moreno and Wooders (2010)).4

The analysis admits to quantify neatly the information requirements of efficient trad-

ing, basically by inverting the related screening mapping to uncover the information needs

associated with the frictions. As our second key literature contribution, we can thus

demonstrate that our findings, derived in a model with highly informative signals, im-

mediately transfer to any markets where signals are sufficiently informative relative to

the prevailing trade frictions. In general, because the low quality sellers’ costs of waiting

become smaller, the information required to separate assets elevates as frictions decrease.

If trade frictions are relatively small, (approximately) efficient decentralized screening is

thus shown to rely jointly on (i) the existence of small positive trade frictions and (ii)

the availability of sufficiently informative signals. This revamps and verifies Moreno and

Wooders (2010)’s hypothesis that “decentralized trade mitigates the lemons problem”.

Our third major result is the observation that, if there exists no efficient equilibrium,

there exists no equilibrium in the market. This occurs when trading high quality is both

4Camargo et al. (2020) find that non-stationary equilibria with aggregate uncertainty become efficient
as frictions vanish. For other positive efficiency results in decentralized markets, see Golosov et al.
(2014) for divisible assets and aggregate uncertainty and Asriyan et al. (2017) for correlated values and
information spillovers. In our model, all learning happens through private quality screening.
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more difficult (i.e., the lemons problem is severe) and more valuable (i.e., the trade surplus

is larger), that is, for ∆l < ∆h < ∆g. This finding derives basically from a discrepancy

between the required trade dynamics and the presumed trade surpluses. On one hand, we

can show that, when the static lemons problem is severe, only standard trade dynamics

may prevail.5 This alleviates the lemons problem by increasing the average quality of

assets. On the other hand, elevating asset quality with vanishing trade frictions also means

that the opportunity cost of trading increases. This intensifies screening and boosts the

quality of unsold assets. Thereby, we find that buyers only offer high prices when they

are almost certain about high asset quality, which increases their payoffs up to ∆h.
6

However, this implies that buyers cannot agree on a price with low quality sellers under

lower expectations, because the trade surplus is smaller ∆l – contradicting the assumed

standard dynamics. The existence and efficiency of an equilibrium thus depend not only

on the severity of the lemons problem, as known since Akerlof (1970), but also on the

relative trade surpluses across traded assets.7

This article contributes to the rapidly growing literature that studies adverse selection

in decentralized market environments with random sequential search. There is also a

large literature about dynamic trading with incomplete information in directed search

markets, e.g., Inderst and Müller (2002); Inderst (2005); Guerrieri et al. (2010); Camargo

and Lester (2014), and in competitive lemons markets, e.g., Janssen and Roy (2002, 2004);

Daley and Green (2012); Fuchs and Skrzypacz (2019).

A voluminous literature studies whether decentralized trade results in equal payoffs as

its centralized counterpart if trade frictions are small. Gale (1986a,b, 1987) and Binmore

and Herrero (1988) investigate the question under complete information, finding efficient

Walrasian payoffs. Moreno and Wooders (2010) extend the analysis to markets with

a lemons problem where no efficient Walrasian equilibrium may exist. They find that

payoff limits remain Walrasian, i.e., inefficient if and only if the lemons problem is severe.8

Unlike our current case, buyers can only separate sellers by randomizing between different

prices, which leaves the surplus to low quality sellers and screens all assets with the same

intensity – thereby fostering inefficient outcomes.

Our work contributes to this literature by showing that efficient decentralized screening

5Otherwise, buyers should only offer high prices and only trade for high signals but, then, average
asset quality decreases so much that buyers only offer low prices – a contradiction.

6Here, buyers obtain positive trade surplus for at least the highest signals, unlike in Moreno and
Wooders (2010), where buyers mix between high and low prices and receive no payoffs.

7As stressed already by Wilson (1980), different stable equilibria can exist. For example, if ∆l ≥
∆h ≥ ∆g, an inefficient limit equilibrium with standard trade dynamics exists in addition to the two
previously described efficient ones. In this case, intensive screening of both assets erodes payoffs, however,
the payoffs may exceed the static Walrasian payoffs.

8For inefficient or non-Walrasian payoffs, see Rubinstein and Wolinsky (1985, 1990); De Fraja and
Sakovics (2001); Blouin and Serrano (2001); Serrano (2002); Blouin (2003); Shneyerov and Wong (2010).
As the key differences, our model allows buyers to choose their prices, has stationary exogenous entry,
and does not rely on coordinated punishments.
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can outperform inefficient centralized trade.9 Previously, efficient trade mechanisms in a

lemons market have been related to sorting. In Hendel et al. (2005), observed asset

vintages allow the establishment of approximately efficient rental markets for all assets.

In Inderst and Müller (2002), different assets are traded in separate markets with distinct

prices and liquidity conditions. Interestingly, in Inderst and Müller (2002) the expected

quality in markets adjusts to support the Riley separating equilibrium outcome whereas,

here, only the cutoff signal adjusts to support efficient trading while prices remain semi-

pooling as in Moreno and Wooders (2010) or Cho and Matsui (2018).10

Another impressive literature considers dynamic trading with adverse selection. Due

to the different time preferences of high and low quality sellers, standard dynamics are

derived in almost all articles in the literature. The few exceptions that feature reversed

dynamics (Taylor, 1999; Zhu, 2012; Kaya and Kim, 2018; Palazzo, 2017; Martel, 2018;

Hwang, 2018; Martel et al., 2022) are characterized by a non-stationary dynamics and

observable time-on-market. Kaya and Kim (2018) explore a dynamic model where an asset

seller meets a sequence of buyers who offer prices after observing the marketing time and

a private quality signal of the asset. Trade dynamics depend on exogenous prior beliefs.

If the prior is low, dynamics are standard. However, reversed dynamics prevail when

buyers have inflated prior beliefs about quality, which alleviates screening to the point

that no seller accepts low prices. Our article changes the setup by focusing on markets

where the average asset quality is endogenous and stationary.11,12 Because assets exit the

market upon trading, reversed dynamics mean that low quality remains in the market

longer, thus decreasing the average market quality and buyers’ quality expectations. As

a consequence, because quality expectations at the cutoff are bounded above by prior,

we can show that dynamics only reverse when the lemons problem is non-severe; this

follows immediately from simple application of the monotone likelihood ratio property.

Our work connects trade dynamics to efficient asset screening and delivers a measure of the

information required in efficient trading for given trade frictions. Previous work remains

mute about the relationship between efficiency and dynamics and the complementary

roles of information and frictions in mitigating the lemons problem.

The article is organized as follows. The model is outlined in Section 2 and its basic

features in Section 3. Section 4 describes limit equilibria first with unbounded information

and later with bounded information. Section 5 concludes by discussing the effects of

9When frictions remain positive, Moreno and Wooders (2010) also demonstrate that the surplus
created by trade can be higher in the decentralized equilibrium than in the centralized equilibrium.
However, the described payoffs remain generally inefficient. Moreover, as noted by Kim (2017), the result
does not survive extension to continuous time trading.

10Contrary to what we have, Inderst and Müller (2002) assume that buyers outnumber sellers, which
erases buyers’ payoffs fostering therefore an efficient outcome.

11In the sequential adverse selection experiment of Araujo et al. (2021) the majority of players applied
stationary responses in contrast to the optimal time varying ones.

12We also dispense with the assumption in Kaya and Kim (2018) that time-on-market is observable,
our focus being on decentralized markets where assets sell quietly.

5



alternative model assumptions and the role of commitment granted by signal information.

Proofs are relegated to the Appendix.

2 Model

The model closely follows that of Moreno and Wooders (2010) except for (i) incorporating

buyer signals into trade meetings and (ii) embedding the model in a continuous time

framework.

Time t is continuous and horizon infinite. A unit mass of buyers and a unit mass of

sellers enter the market at a rate normalized to unity. Every seller holds an indivisible

asset generating a stream of dividends, whose arrival times follow the Poisson process

with the rate fixed to unity.13 Sellers value the stream lower than buyers. Gains from

trade thus arise: each seller wants to sell an asset and each buyer wants to buy one.

Assets differ in quality, θ = h, l, which could be high or low, and generate different

streams of dividends for their owners. Quality is private information to the seller. To

simplify notation, we assume that asset qualities enter the market in equal proportions.14

The (flow) valuation of a dividend to a buyer is given by uθ whereas the (flow) valuation

to a seller is denoted by cθ, which is lower: uθ > cθ. It is further assumed that high

quality assets are strictly more valuable to both buyers and sellers: uh > ul and ch > cl.

Both sellers and buyers discount future payoffs at rate r > 0. Hence, if a seller with an

asset of quality θ trades with a buyer for price p, evaluated at the moment of trading, the

seller’s payoff is p− cθ
r
whereas the buyer’s payoff is uθ

r
−p, because the present discounted

value of the asset equals
∫∞
0

e−rtcθdt =
cθ
r
to the seller and

∫∞
0

e−rtuθdt =
uθ

r
to the buyer.

Later, we refer to these (stock) valuations with capital letters: Uθ :=
uθ

r
and Cθ :=

cθ
r
.

Opportunities to trade arise at a Poisson rate normalized to unity at which a buyer is

randomly matched with one seller in the market.15 In a meeting between a buyer and a

seller, the buyer obtains a signal s of the seller’s asset quality and, thereafter, makes the

seller a take-it-or-leave-it-offer p about the price.

If the seller accepts the price p, the asset is traded to the buyer, and both traders exit

the market. Otherwise, the buyer and seller separate and wait in the market until a trade

opportunity with someone else appears at a rate one. The market is so large that the

same buyer and seller are almost never matched again.

Signals s are distributed according to distribution functions Fθ : [0, 1] → [0, 1], which

are continuous and supported on the unit interval [0, 1] = cl{s|fθ(s) > 0}, where fθ

13This is without loss because changing the arrival rate from one to λ is equivalent with changing the
dividend yield from cθ to λcθ for sellers (from uθ to λuθ for buyers).

14Thus, the low quality sellers enter at rate half and high quality sellers enter at the same rate. We
relax this later in Section 5, showing the innocence of the assumption.

15Thus, frictions are captured by trade delay and the time cost from discounting r.
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denotes the density function related to Fθ.
16 To allow a buyer to separate qualities

by adjusting screening, we assume here that higher signals indicate higher quality and

extreme signals are perfectly revealing.17 The following assumption captures these ideas:

Assumption 1

fh(s)

fl(s)
∈ (0,∞) , for all s ∈ (0, 1) ,

∂

∂s

fh(s)

fl(s)
∈ (0,∞) , for all s ∈ (0, 1) ,

lim
s→0

fh(s)

fl(s)
= 0,

lim
s→1

fh(s)

fl(s)
= ∞.

The first two lines just state that signals s ∈ (0, 1) satisfy the standard monotone

likelihood ratio property (MLRP). The two latter lines entail more specifically that any

likelihood ratio fh(s)
fl(s)

∈ (0,∞) is attainable for an appropriate signal s ∈ (0, 1).

To focus on decentralized environments and simple trading strategies, we further as-

sume that (i) the signals and actions in a pairwise meeting are not observable by outsiders

and (ii) the signals observed in earlier meetings are not part of the trading history.

We study stationary Markov equilibria in behavioral strategies σ = (p, ah, al) defined

as follows: The strategy of a buyer is a function p : [0, 1] → ∆ [0,∞) mapping a signal s

to the probability distribution G(s) of offers p(s). The strategy of a seller is a function

aθ : [0,∞) → [0, 1] that maps a price p to the probability of acceptance aθ(p). We

focus on a steady-state market. The proportions of high and low quality assets thus

remain constant. This enables us to endogenize buyers’ expected asset quality naturally.

The solution concept is a perfect Bayesian equilibrium (PBE). A PBE is a pair (σ,π)

consisting of a strategy profile σ and a belief system π such that (i) the strategy profile

σ is consistent with sequential rationality given the belief system π, and (ii) the belief

system π is derived from the strategy profile σ with Bayes’ rule whenever possible.

As it turns out later, the properties of equilibrium will depend on the relative trade

surpluses of different asset qualities,

∆θ = Uθ − Cθ > 0,

and the benefit of selling a low quality asset for a high price, i.e., the gap between the

seller’s payoff Ch and the buyer’s utility Ul:

∆g = Ch − Ul > 0.

16The set closure clA is the smallest closed set which contains the original set A.
17As Fθ is continuous, the likelihood of observing a revealing signal is almost zero.
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Trading high quality assets becomes harder if the gap is larger:

Definition 1 The static lemons problem is severe if ∆g > ∆h.

Namely, if the gap is larger than the high surplus, the expected buyer valuation of

assets is smaller than the valuation of a high quality asset seller:

Ū :=
Uh + Ul

2
< Ch ⇐⇒ ∆h < ∆g.

This implies that there is no one price for which all assets could trade immediately. In

other words, the static Walrasian market equilibrium is inefficient if the lemons problem

is severe, whereas if the problem is not severe, any p ∈
[
Ch, Ū

]
constitutes an efficient

Walrasian equilibrium.18

Our dynamic model extends the static Walrasian setting in that (i) there could be

trade at different prices for different signals in a meeting between a buyer and a seller,

and (ii) trade could be postponed if the terms of trade in the ongoing meeting are not

sufficiently attractive.19

3 Preliminaries

We proceed to characterize an equilibrium in a stationary lemons market with continuous

quality signals. This section initiates the analysis by making some preliminary observa-

tions regarding trade strategies.

Any strategies define continuations values Vb for a buyer and Vθ for a seller.20 Sequen-

tial rationality requires that the strategies p(s) for a buyer and aθ for a seller in a meeting

are optimal given Vb and Vθ.

Given a buyer’s price offer p, the problem of a matched seller becomes

Vθ(p) = max
aθ

aθ(p− Cθ) + (1− aθ)Vθ,

which is simply the choice between whether to trade for the price that the current buyers

offers, which gives p − Cθ, or return to the market to obtain Vθ. The solution to the

seller’s problem remains unchanged regardless of whether we assume that the seller can

also observe the signal s.

18In both of these cases, p = Ul represents an inefficient Walrasian equilibrium for which the supply
consists of all low quality assets and the demand consists of one half of the buyers, who are indifferent
between purchasing and not: hence, supply equals demand.

19The notion of Walrasian equilibrium (price taking and market clearing) does not preclude trade at
multiple prices, e.g., high quality trading at Ch and low quality trading at Cl - but then we must add a
rationing rule. Here we study signal-based (efficient) rationing.

20These continuation values are derived in the Appendix.
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Conditional on observing a signal s, the problem of a matched buyer is

Vb(s) = max
p

q(s)ah(p)(Uh − p) + (1− q(s))al(p)(Ul − p)+

(q(s)(1− ah(p)) + (1− q(s))(1− ah(p)))Vb,

where q(s) gives the probability of being matched with a high quality seller. If buyer

chooses price p, the probability of trading high quality (Uh − p) is q(s)ah(p) whereas the

that of trading low quality (Ul− p) is (1− q(s))al(p). Otherwise, the buyer returns to the

market getting Vb.

3.1 Cutoff strategies

Lemma 1 (Seller’s cutoffs) There exist a seller’s reservation price xθ for both low and

high quality asset sellers θ = h, l, respectively, such that

aθ(p) =

1, if p ≥ xθ,

0, if p < xθ.

As is standard in related models of dynamic trading, a seller’s optimal strategy is a

cutoff strategy: a seller of quality θ accepts any offer above a reservation price xθ but

rejects smaller offers. The reservation price xθ equals a seller’s continuation value Vθ,

i.e., the opportunity cost of selling the asset in the current meeting. As a consequence, a

buyer’s strategy of targeting a seller of quality θ is to offer the price xθ exactly.

The value of not selling the asset in the current meeting, Vθ, is at least the value of not

selling the asset in any future meeting, Cθ. Additionally, a high quality seller must have a

higher reservation price than a low quality seller because the asset has a higher dividend

yield: xh > xl. Specifically, we can show that xh = Ch > xl ≥ Cl a holdup problem of a

high quality seller permits a buyer to reduce the price xh unless it equals Ch.

Lemma 2 (Buyer’s cutoffs) There exist a buyers’ reservation price x0 for low quality

and a reservation signal y for a high price such that

p(s) =


xh = Ch, if s ≥ y,

xl = Vl, if s < y and Ul ≥ Vl + Vb.

x0 = Ul − Vb, if s < y and Ul < Vl + Vb.

The optimal price strategy of a buyer is more subtle as it depends on the endogenous

valuations Vb and Vθ. At this point, we can show that buyers offer a high price xh above a

cutoff y and a lower price min {xl, x0} below the signal y. This incorporates the possibility

that, when skipping a meeting is optimal, a buyer makes an empty offer x0 that no seller
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would accept. Optimally, the empty offer x0 is made when the expected quality is too

low to justify a offering xh but, at the same time, neither is trading low quality optimal

because a low quality seller’s reservation price, xl = Vl, is higher than a buyer’s reservation

price for low quality, x0 = Ul − Vb. This occurs when the payoff for buying low quality Ul

fails to cover the joint opportunity costs of trade Vb + Vl.
21

3.2 Expected quality

Because gains from trade are positive with both qualities, buyers are willing to pay higher

prices for higher quality, but are reluctant to do so if the expected quality remains low.

Buyers’ optimal price strategies hence depend on their beliefs. Specifically, a buyer will

offer a high price xh which both sellers will accept if and only if the probability q that

the seller has a high quality asset reaches a cutoff, i.e., q ≥ q⋆. The cutoff q⋆ solves the

following equality, requiring that a buyer is indifferent between offering a high price xh

and the minimum of a low price xl and an empty offer x0:

q⋆ (Uh − xh)︸ ︷︷ ︸
>0

+(1− q⋆) (Ul − xh)︸ ︷︷ ︸
<0

= max {(1− q⋆) (Ul − xl) + q⋆Vb, Vb} . (1)

If a buyer makes a price offer xh, the buyer’s payoff is positive Uh−Ch if the seller has

a high quality asset but, if the seller has a low quality asset, the buyer’s payoff is negative

Ul − Ch. Instead, the payoff for offering xl is (1− q⋆) (Ul − xl) + q⋆Vb (only a low quality

seller accepts the offer) and the payoff for offering x0 is Vb (neither of the sellers accepts

the offer). If the seller does not accept a price, the buyer’s continuation payoff is Vb.

In forming beliefs q, buyers take into account the endogenous market composition, i.e.,

how many assets of each quality circulate in the market. We call these prior beliefs, that

only condition on the average asset quality in the market, buyers’ unconditional beliefs

qu. Additionally, buyers’ beliefs condition on the signal they obtain in the meeting with

the current seller. These buyers’ conditional beliefs are hereby denoted by qc(s).

Because each asset quality enters the market at rate half and leaves the market upon

trading, the market composition is determined solely by the sellers’ relative trade proba-

bilities. In a stationary equilibrium, the inflow of assets to the market has to equal asset

outflow. Thus, the following equality must hold for both high and low quality assets

1/2 = Mθ(1−Gθ(xθ−)).

The left-hand-side (lhs) denotes the market inflow of quality θ assets and the right-hand-

side (rhs) denotes the market outflow. On the rhs, Mθ refers to the mass of sellers of

21Without loss of generality, we thus assume that buyers offer their reservation value x0 = Ul − Vb

when it lies below a low quality seller’s reservation value xl = Vl. Yet, letting the empty offer x0 assume
any value below xl would obviously be outcome-equivalent to offering x0.
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quality θ in the market, and 1 − Gθ(xθ−) to the flow trade rate of a seller of quality θ,

i.e., the probability a buyer offers at least xθ in a meeting that arrives at rate unity.22

Using Bayes’ rule, qu and qc(s) can hence be derived as follows

qu =
Mh

Mh +Ml

=
1

1 + 1−Gh(xh−)
1−Gl(xl−)

, (2)

qc(s) =
Mhfh(s)

Mhfh(s) +Mlfl(s)
=

1

1 + 1−Gh(xh−)
1−Gl(xl−)

fl(s)
fh(s)

, (3)

where qc(s) is derived from qu by incorporating the information about the likelihood ratio
fh(s)
fl(s)

of receiving the observed signal s from high versus low quality.

The unconditional beliefs qu depend on the relative rates at which different assets are

traded in the market. That is, if one asset quality is traded more slowly than the other

asset quality, it amasses in the market in relative terms, increasing a buyer’s expectation

of meeting a seller with this quality.

This affects how willing a buyer is to make a high price offer, xh, and whether a low

quality seller accepts a low price, xl – or prefers to wait until a buyer observes a sufficiently

high signal to offer a high price.

We denote the signal for which qc(s) = q⋆ by s = y. Because the likelihood ratio

fh(s)/fl(s) is by assumption increasing in s, buyers’ conditional beliefs qc(s) are clearly

increasing in the observed signal. Thus, a buyer will offer a high price if and only if the

signal is above the cutoff, i.e., q ≥ q⋆ iff s ≥ y.

Our framework differs from most earlier approaches in that buyers observe continuous

signals and have a positive probability of observing signals that are strongly informative.

This results in purified strategies (Harsanyi, 1973) relative to the previous literature.

Mixing between higher and lower prices occurs, for example, in a model without signals

by Moreno and Wooders (2010) and in a model with binary signals by Kaya and Kim

(2018). The reason for mixing is basically that, unlike here, the desirable screening may

fail to be implementable without signals or with only two distinct signals. To adjust

screening the best they can, buyers thus resort to random pricing, whereas here pricing

follows pure strategies.

3.3 Trade dynamics

Whether trade dynamics are standard (i.e., low quality trades faster), reversed (i.e., high

quality trades faster) or what we call “knife-edge” depends on the endogenous valuations

Vb and Vl.

Lemma 3 Feasible equilibrium dynamics can be classified into the following patterns:

22Technically, Gθ(x−) = limp→x− Gθ(p) denotes the left derivative of a buyer’s unconditional
(marginal) offer distribution Gθ to sellers of quality θ at x.
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1. Standard dynamics. If Vb + (Vl − Cl) ≤ ∆l, p(s) = Ch for s ≥ y, p(s) = xl for

s < y, and qu = 1
1+(1−Fh(y))

≥ 1/2.

2. Reversed dynamics. If Vb + (Vl − Cl) > ∆l, p(s) = Ch for s ≥ y, p(s) = x0 for

s < y, and qu = 1

1+
1−Fh(y)

1−Fl(y)

≤ 1/2.

3. Knife-edge dynamics: If Vb + (Vl − Cl) = ∆l, p(s) = Ch for s ≥ y, p(s) = xl for

s ∈ (z, y) and p(s) = x0 for s ∈ (0, z) for z ∈ (0, y), and qu = 1

1+
1−Fh(y)

1−Fl(z)

⋚ 1/2.23

We focus on standard and reversed trade dynamics in the main text; the analysis

of knife-edge dynamics is delegated to the Appendix. We can show immediately that,

because the prior depends on the severity of the lemons problem, reversed dynamics

cannot arise here under a severe lemons problem, unlike in Kaya and Kim (2018) where

the prior is exogenous.24

Lemma 4 A necessary condition for reversed dynamics is ∆h ≥ ∆g.

The result arises because reversed dynamics, where high quality leaves the market

faster, decrease market quality. Thus, buyers’ conditional beliefs at the cutoff s = y are

bounded above by the prior beliefs q0

qc(y) =
1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

< q0 =
1

2
,

simply due to the MLRP. As a result, if buyers are not willing to offer xh under q0, under

a severe lemons problem, buyers still remain unwilling to offer xh under qc(y), as required

to sustain an equilibrium.25

Intuitively, trading low quality at a lower rate 1− Fl(y) and high quality at a higher

rate 1−Fh(y) reduces market quality so much below the prior that, under a severe lemons

problem, offering high prices is only optimal for signals s that are strictly larger than the

cutoff signal y. This contradicts the assumption that offering xh is optimal at y.

4 Equilibrium

4.1 Positive frictions

To evaluate market welfare in a stationary equilibrium, we use the measure applied by

Moreno and Wooders (2010),

23This construction defines a pure strategy equilibrium. However, a payoff-equivalent randomized
equilibrium, where buyers mix between xl and x0 for s < y, always exists.

24This restricts the conditions for reversed dynamics from Kaya and Kim (2018) where the prior can
deviate from the average market quality, allowing for arbitrary inflated beliefs.

25The details are in the Appendix.
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W = Vb +
1

2
(Vh − Ch) +

1

2
(Vl − Cl) = Vb +

1

2
(Vl − Cl) ,

which gives the expected present discounted value of the trade surplus accruing to a

cohort of buyers and sellers about to enter the market. The maximum welfare is given

by the complete information benchmark, ∆h+∆l

2
, which the buyers and sellers would get

if they traded without a delay. The maximum is generally unattainable when frictions

are positive because the inevitable lag in meeting the first trading partner diminishes the

trade surplus of buyers and sellers who discount future payoffs.

Another source of inefficiency is screening. Because buyers only offer high prices for

high signals, all sellers cannot expect to trade at rate one, which is the meeting rate

between a buyer and a seller. Indeed, according to our earlier results, high quality sellers

trade at rate 1−Fh(y) because they only accept high prices xh. Low quality sellers trade

at rate 1 with standard dynamics (also accepting low prices xl) but only at rate 1−Fl(y)

with reversed dynamics (only accepting high prices xh).

Lemma 5 y > 0 for r > 0.

According to Lemma 5 the cutoff y is always positive in dynamic markets. This

shows that, although the trade surplus of both asset qualities is positive, some meetings

are not conductive to trade as would be efficient. The result is notable in showing that

screening reduces efficiency even when the lemons problem is not severe in the market.

An endogenous lemons problem therefore arises.

It is noteworthy that, in the absence of signals, all sellers could trade in the first

meeting for a common price Ch if the lemons problem is not severe and the average

asset quality is thus high, i.e., Ū > Ch. Trade would thus be efficient. Unfortunately,

the pooling equilibrium becomes impossible to sustain when signals are introduced. In

particular, we find that trade is always delayed with signals because, by Assumption 1,

for any ϵ > 0, there is a positive probability Fh(δ(ϵ)) > 0 of observing such a low signal

s < δ(ϵ) that buyers’ beliefs collapse to qc(s) < ϵ. Convinced that the quality of the

seller’s asset is low, a buyer hence makes a low price offer, which a high quality seller

rejects.

Previously, Daley and Green (2012) observe in a model with news that trade could also

be delayed without a severe lemons problem because traders wait for news to accumulate

in order to trade. The reason for trade delay is much like here, that information makes

buyers’ beliefs noisy. This will make it harder to agree on a price when the noise takes a

buyer’s belief about an asset far from its seller’s belief.26

26This is akin to the so called Hirshleifer (1971) effect, which shows that information can destroy
efficient pooling opportunities.
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4.2 Vanishing frictions

We move to investigate the properties of equilibria in markets where trade frictions are

negligible. Lemma 5 shows that equilibria are inefficient with positive frictions because

the cutoff y at which trade is certain is positive. Lemma 6 proves further that the cutoff

y approaches its upper bound as frictions disappear and meetings happen at exploding

speed.

Lemma 6 y → 1 as r → 0.

Intuitively, the cutoff increases as frictions vanish because both a buyer’s payoff and a

low quality seller’s payoff for waiting for higher signal elevates with patience. To terminate

search by offering price xh, a buyer thus needs to be more strongly convinced about high

asset quality, whereas low quality sellers must be screened more strongly to accept xl.

Based on Lemmata 5 and 6, the efficiency properties of equilibria as frictions disappear

thus remain unclear. On the one hand, as r → 0, buyers will obtain information at a

lower wait cost, i.e., it costs less to wait for highly informative signals. On the other hand,

as y → 1, buyers will become more selective, which makes trading more difficult.

Interestingly, we find however that equilibrium properties are not governed by either

of the limit properties alone but the proportions of r and y. Specifically, this article shows

that there are three paths for r(fh(y)
fl(y)

)−1 satisfying (y, r) → (1, 0) that may each converge

to a possible limit equilibrium. The equilibrium candidates differ in dynamics, efficiency,

and payoffs.

1. In the first tentative equilibrium, the likelihood ratio fh(y)
fl(y)

remains low relative to

discounting r. The general ease of trading at high prices thus entails that dynamics

are reversed and efficient pooling prevails.

2. In the second equilibrium candidate, fh(y)
fl(y)

stays higher for r. This guarantees that

the time cost of obtaining a high price offer xh is much lower for high quality than

low quality assets. Dynamics are standard and screening efficient.

3. In the third possible equilibrium, fh(y)
fl(y)

gets even higher for r. All sellers thus face

extremely high cost of waiting for a high price offer. This extreme screening is

inefficient. Trade dynamics remain standard.

4.3 Screening with unbounded signal information

We proceed to describe the parametric conditions under which each candidate represents

a stationary limit equilibrium. This is done by partitioning the signal set by screening,

i.e., the ease of trading different qualities at a high price. Lemma 7 formalizes our notion

of screening.
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Lemma 7 For any M > 1 and any r0 < 1/M , there exist signals 0 < s0 < sl < sh < 1

and functions νh(s, r) < νl(s, r) such that

νl(s0, r0) = νh(sl, r0) =
1

M
< M ≤ νl(sl, r0) = νh(sh, r0),

where

νh(y, r) :=
r

1− Fh(y)
<

νl(y, r) :=
r

1− Fl(y)
,

and s0 → 1 as M → ∞.

Above, Lemma 7 defines a mapping νθ for each quality θ, called here the screening

intensity, which describes the time cost of selling this quality for a high price, xh. The

screening intensities νh and νl of both qualities are increasing in y and r because, all

else being equal, trading for a high price is generally more difficult if either the discount

factor r (representing frictions) or the cutoff signal y (representing screening) is higher.

However, the screening intensity of high quality νh always stays below that of low quality

νl because higher signals s ≥ y are more likely to come from high quality assets.

Moreover, Lemma 7 shows that when frictions are low, screening partitions the signal

space as follows: First, if the cutoff y belongs to I0 = [0, s0], it is very easy for all assets to

trade for xh. Next, if y ∈ Il = (s0, sl), obtaining a high price for low quality becomes hard

(i.e., as hard as we want) whilst receiving a high price high quality remains easy (i.e., as

easy as we want). Thereafter, presuming the cutoff reaches higher levels, y ∈ Ih = [sl, sh) ,

screening also intensifies for high quality. For y ∈ I1 = [sh, 1], it hence becomes very hard

to sell high quality, which never settles for a low price xl.

Figure 1 illustrates this partitioning by mapping νh and νl as functions of y and showing

the cutoffs s0 and sl corresponding to M = 4 for r = 0.05; sh is so close to one that it

cannot be discerned. Note that the cutoffs s0 < sl < sh increase if either M increases

or r decreases. That is, to keep the relative screening of low quality above a certain

level, 1
M2 ≥ νh

νl
(y, r), the cutoff y has to be increased if the frictions r are decreased.27

These basic properties of screening with unboundedly informative signals make it easy to

demonstrate existence and characterize equilibria by focusing on screening.

Generally, an equilibrium with standard trade dynamics is given by y and (Vb, Vl)

27By Lemma 6, this is what we find happening in equilibrium.
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Figure 1: Illustration of Lemma 7.

satisfying the following system28

qc(s) =
1

1 + 1−Fh(y)
1

fl(s)
fh(s)

, for s ∈ [0, 1]

qc(y) (Uh − Ch) + (1− qc(y)) (Ul − Ch) = (1− qc(y)) (Ul − Vl) + qc(y)Vb, (4)

Vb =
∆h − (1− Fl(y))∆g + Fl(y)(Ul − Vl)

2 + r + νh(y, r)
,

Vl = Cl +
∆g +∆l

1 + νl(y, r)
,

Vb + (Vl − Cl) ≤ ∆l. (5)

Similarly, an equilibrium with reversed trade dynamics is given by y and (Vb, Vl) sat-

isfying the system of conditions

qc(s) =
1

1 + 1−Fh(y)
1−Fl(y)

fl(s)
fh(s)

, for s ∈ [0, 1]

qc(y) (Uh − Ch) + (1− qc(y)) (Ul − Ch) = Vb, (6)

Vb = Vb(y) =
∆h −∆g

2 + νh(y, r) + νl(y, r)
,

Vl = Cl +
∆g +∆l

1 + νl(y, r)
,

Vb + (Vl − Cl) > ∆l. (7)

28See the Appendix for the details and additional commentary.
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In both systems the first line denotes the beliefs for the dynamics. The next line is

a fixed point condition FPh that defines the cutoff. Then come the continuation values

formulated here as a function of screening νh and νl. The last line is an incentive condition

IC0l which ascertains that dynamics are as assumed. Notably, because FPh and IC0l are

continuous in y, we can demonstrate existence and characterize equilibria by locating for

the roots of FPh(y) and IC0l(y). The roots (dots) corresponding to different equilibria

are shown in Figure 2.

(a) ∆h ≥ ∆g (b) ∆l ≥ ∆h (c) ∆g > ∆h > ∆l

Figure 2: FPh for low r.

4.3.1 Reversed dynamics

The first equilibrium illustrated in Figure 2a has the most relaxed screening and thus

reverse dynamics. By (6), the equilibrium cutoff signal y thus satisfies the following fixed

point condition

1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

∆h +

(
1− 1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

)
(−∆g) =

1

2 + νh(y, r) + νl(y, r)
∆h +

1

2 + νh(y, r) + νl(y, r)
(−∆g),

where the lhs captures the payoff for offering xh, E(u|y)−Ch and the rhs that of offering

x0, Vb. Note that, by Lemma 4, reversed dynamics require that the lemons problem is

not severe: i.e., ∆h ≥ ∆g.

Presuming ∆h ≥ ∆g, it is now easy to see that a fixed point exists for low r as the

utility of offering xh is Ul −Ch at y = 0 and Ū −Ch at y = 1 whereas the utility from x0

is Ū − Ch at y = 0 and 0 at y = 1.

Proposition 1 (Reversed dynamics) If ∆h ≥ ∆g, there exists an efficient limit equi-
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librium where νh ≤ νl → 0,

Vl − Cl → ∆l +∆g, Vb →
∆h −∆g

2

W = Vb +
1

2
(Vl − Cl) →

∆h +∆l

2
,

as r → 0. The equilibrium features reversed dynamics and prior average quality, qu = 0

and qc(y) = 1/2.

The logic behind the result is quite simple. Although waiting for a higher signal raises

the probability of trading high quality, the benefit of stronger equilibrium screening is

limited under reversed trade dynamics. Reversed dynamics mean that high quality leaves

the market faster. As a result, screening reduces the expected quality in the market, qu,

limiting the quality expectations at the cutoff signal, qc(y), by q0 = 1/2 – Lemma 3.

Likewise, while the costs of screening decrease with frictions, stronger equilibrium

screening erodes buyers’ payoffs. Assuming no screening, buyers obtain a positive payoff

for trading prior quality with no delay, ∆h−∆g

2
, whereas screening introduces delay and

decreases the traded quality; prices xh at which trade occurs remain intact. Therefore,

although the cutoff will approach one – Lemma 6 – equilibrium screening remains limited.

Altogether, we therefore observe that the unique limit equilibrium with reversed dy-

namics is defined by a sequence of frictions r → 0 and cutoffs y → 1 such that screening

remains negligible for all assets, i.e., νh ≤ νh → 0 as (y, r) → (1, 0). This gives buyers the

payoff of ∆h−∆g

2
and low quality sellers the (net) payoff of ∆g −∆l. Despite y → 1, both

qualities are thus traded in the market at efficient rates relative to frictions r → 0.

These are novel findings, extending the scope of reversed dynamics in markets with

signals29 described previously by Kaya and Kim (2018) from non-stationary environments

of unknown efficiency properties to efficient stationary markets. A significant caveat to

practitioners arising from our research is that, although Kaya and Kim (2018) show that

reversed dynamics arise under flexible conditions assuming the prior is above the steady-

state beliefs, we observe instead that reversed dynamics cannot be sustained in the long

run in stationary markets under a severe lemons problem.

The restriction may seem unfortunate. There is ample evidence of reversed dynamics

(Hendel et al., 2009; Lei, 2011; Tucker et al., 2013; Albertazzi et al., 2015; Jolivet et al.,

2016; Aydin et al., 2019) whereas standard dynamics are rarer (Ghose, 2009). A solution

is suggested by our Lemma 5. It shows that trade is delayed with signals irrespective of

whether the lemons problem is severe. Hence, while the literature has concentrated on

29Without signals the standard dynamics in lemons markets derive straight from the skimming property
(Fudenberg and Tirole, 1991), which states that all prices that are accepted by high quality sellers are
also accepted by low quality sellers. If the same prices are offered to all sellers, this means that low
quality is traded faster. By Lemmata 1 and 2, the skimming property holds also in this article. However,
because signals enable buyers to target high prices to high quality sellers, as accurately as desirable, the
property does not suffice to characterize trade dynamics with signals.
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severe examples, applications may be dominated by non-severe lemons cases. The severity

of the problem, i.e., ∆h vs. ∆g, is hardly known in practice.

4.3.2 Standard dynamics

The remaining equilibria pictured in Figure 2b have more intensive screening and thus

standard dynamics. The equilibrium cutoff signal y should satisfy the following fixed

point condition, which follows directly from (4) as we let y → 1 and r → 0 based on

Lemma 6

∆h = Vb =
∆h +

(
∆l − ∆g+∆l

1+νl(1,0)

)
2 + νh(1, 0)

, (8)

where νl(1, 0) and νh(1, 0) refer to the limit screening intensities, which by Lemma 7 can

assume various values as (y, r) approach (1, 0).

Despite not holding exactly outside the limit, this formulation of the equilibrium fixed

point condition is very illuminating and hence a great tool for demonstrating the logic

behind the model. First, (8) shows that when the costs of waiting for an unboundedly

informative signal vanish, buyers only offer high prices when they are almost sure the

asset is of high quality. This endogenous certainty allows buyers to capture the whole

high trade surplus, Vb = ∆h, from the high price offers that are precisely targeted to high

quality sellers only.

Second, because the payoff to buyers from trading low quality assets in a limit equi-

librium under standard dynamics is captured by

∆l −
∆g +∆l

1 + νl(1, 0)
≥ 0 ⇐⇒ νl(1, 0) ≥

∆g

∆l

.

(8) also demonstrates that the incentives for trading low quality at low prices rely on

strong enough screening of low quality assets.

Finally, we can also see in (8) a previously unrecognized strategic complementarity of

low quality screening νl and high quality screening νh

∂Vb

∂νl
> 0,

∂Vb

∂νh
< 0.

As it turns out, this gives rise to multiple limit equilibria with standard trade dynamics:

one has lower νl and νh and the other higher νl and νh.

This complementarity originates generally from the fact that (i) νl furthers trade of

low quality assets whereas (ii) νh impedes trade of high quality assets. Specifically, the

effect of higher νl on Vb is positive because stronger screening reduces low quality sellers’

payoff. This makes it, on the one hand, optimal for low quality sellers to accept low prices
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instead of waiting for high and, on the other hand, permits a buyer to capture a larger

share of low quality trade surplus ∆l. Moreover, notably, because low quality is always

traded in the first match, νl has no effect on average market quality and, therefore, the

frictions of trading high quality. This contrasts starkly with the negative effect of νh on

Vb. A higher νh implies both a higher average quality in the market and a higher threshold

for offering a high price. Consequently, more high quality assets remain unsold and more

meetings involve high quality assets but, at the same time, exceeding numbers of meetings

that involve high quality assets result in trade. Thus, by affecting positively the pool of

traded assets, increased screening of high quality assets - surprisingly - decreases buyers’

overall chances to trade. This reduces buyers’ payoffs Vb.

In summary, this shows that we can either decrease νl or increase νh to reduce buyers’

payoffs from the technical maximum

Vb =
∆h +∆l

2
, (9)

which is given by νl → ∞ and νh → 0. Provided high quality is less valuable, ∆l > ∆h,

two solutions to (9) hence exist.

Proposition 2 (Standard dynamics) If ∆l ≥ ∆h, there exist both an efficient limit

equilibrium where νh → 0 < νl → ∆g+∆h

∆l−∆h

Vl − Cl → ∆l −∆h, Vb → ∆h

W = Vb +
1

2
(Vl − Cl) →

∆h +∆l

2
,

as r → 0, and an inefficient limit equilibrium where νh → ∆l−∆h

∆h
< νl → ∞

Vl − Cl → 0, Vb → ∆h

W = Vb +
1

2
(Vl − Cl) → ∆h <

∆h +∆l

2
.

as r → 0. These equilibria feature standard dynamics and high average quality qu =

qc(y) → 1.

Thus, the equilibrium with lower screening of both qualities is efficient and that with

higher screening of both assets inefficient. As suggested previously, equilibria with dif-

ferent welfare properties arise because sustaining an equilibrium with standard dynamics

only requires that Vb = ∆h and νl ≥ ∆g

∆l
. That is, we need to find a cutoff y → 1 as r → 0

such that (i) buyers are willing to offer high prices for s > y and (ii) low quality sellers

accept low prices for s < y. This can be achieved either by rather mild quality screening,

which allocates assets of both qualities efficiently, or by relatively strong screening, which

results in wasteful delay in trading high quality.
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The division of payoffs in equilibrium is noteworthy. First, buyers payoffs are always

positive as they need to equal ∆h. Second, we find that the intensified screening in the

inefficient equilibrium, ultimately, drives low quality out of the market, i.e., qu → 1, and

leaves the sellers with zero surplus, i.e., Vl → 0. This contrasts with the literature, where

private information enables low quality sellers to receive positive information rents. For

example, the surplus of trading ∆l is fully extracted by low quality sellers in Moreno and

Wooders (2010). In their model, buyers and high quality sellers thus obtain nothing, i.e.,

limit payoffs as frictions vanish are Walrasian.30

4.3.3 Non-existence

Figure 2c points out that a non-existence of an equilibrium is also a possibility. This is

already suggested by our previous analysis, which shows that the maximum for buyers’

payoffs is

Vb =
∆h +∆l

2
. (10)

If high quality is more valuable, ∆h > ∆l, no solution to (10) thence exists. Adding to

this, if we assume the lemons problem is severe, ∆g > ∆h, no equilibrium with reverse

dynamics exists.

Proposition 3 (Non-existence of equilibrium) If ∆g > ∆h > ∆l, there exists no

stationary limit equilibrium as r → 0.

The intuition for the non-existence of an equilibrium is given by a fundamental dis-

crepancy between (i) the required screening to overcome a severe lemons problem and

(ii) the higher payoff of trading high quality than low quality. In particular, although

different qualities can in the limit be separated efficiently by signals, buyers cannot be

simultaneously encouraged to trade both high quality, for the higher payoff of ∆h, and

low quality, for the lower payoff of ∆l. In equilibria with standard dynamics, negligible

information costs allow buyers to obtain the full surplus of high quality trade ∆h. But

this means that buyers are no longer interested in trading low quality for a lower trade

surplus ∆l, thus contradicting standard dynamics.31

Figure 3 summarizes the existence conditions of different equilibria in terms of welfare

and dynamics. A multiplicity of equilibria with different dynamics and efficiency proper-

ties arises when low quality is more valuable to trade while either a unique equilibrium

or no equilirium exists if low quality has smaller trade surplus. The relatively neglected

trade value of “lemons” thus determines trade possibilities.

30Fuchs and Skrzypacz (2019) argue that limit payoffs in a lemons market are Coasian. We discuss
this idea more closely in Section 5.

31See the Appendix for the derivation of both efficient and inefficient equilibria with knife-edge dy-
namics, which exist for this case.
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Figure 3: Existence of equilibria for r → 0.

The equilibrium set can be refined by focusing on, e.g., (i) undefeated equilibria with

maximal payoffs (primarilty) to buyers and (secondarily) to sellers (Mailath et al., 1993)

or (ii) “simple” and “robust” equilibria. The former criterion advocates efficient standard

dynamics, which yield the highest payoffs ∆h to buyers and positive payoffs ∆l −∆h to

sellers. However, the low information needs speak for efficient reversed dynamics.

Regarding comparative statics, we further observe that buyers’ payoffs are increasing

in ∆h (and decreasing in ∆g) while low quality sellers’ payoffs are increasing in ∆l (and

decreasing in ∆h and ∆g). This arises because of two forces. The first force is that

efficiency considerations combined with flexible screening possibilities allow buyers and

sellers to enjoy the entire trade surplus ∆l+∆h

2
. The second novel force is that as frictions

vanish optimal screening must keep a buyer indifferent between offering min {x0, xl} and

offering xh. As screening intensifies, the payoff of the former approximates Vb and the

payoff of the latter approaches ∆h. Buyers’ payoffs will hence turn to ∆h−∆g

2
under reversed

dynamics and to ∆h under standard dynamics. We are not aware of any counterpart to

this result in the literature.

It is also noteworthy that, if there exists a stationary equilibrium, there exists an effi-

cient stationary equilibrium. As discussed, efficient screening arises in our model because

of two main reasons: (i) frictions of trading are vanishingly small and (ii) information in

signals is sufficiently rich (e.g., in Moreno and Wooders (2010) no quality information is

observed and in Kaya and Kim (2018) the observed information is coarse). However, a
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remaining problem that we have is that efficient trading only arises here in a stationary

equilibrium. Thereby, unless the market has reached an efficient stationary equilibrium,

the properties of the transition path are important for efficiency. This is left for future

study. Non-stationary dynamics may also play a key role when no stationary equilibrum

exists for ∆g > ∆h > ∆l.

4.4 Screening with bounded signal information

To demonstrate the usefulness of considering rich information structures, we next show

how our analysis with unboundedly informative signals informs analyses with bounded

signal information. To proceed, we thus suppose there exists an upper bound B < ∞ on

the informativeness of quality signals s, i.e., 1
B
≤ fh

fh
(s) ≤ B.

To transport the idea immediately into our framework, we thus assume that all signals
fh
fh
(s) < 1

B
and fh

fh
(s) > B are replaced by, respectively, the (lowest) signal s which gives

fh
fh
(s) = 1

B
and the (highest) signal s which gives fh

fh
(s) = B.32 To retain the feature that

high signals indicate high quality, we assume that E[u|s, q0] > E[u|q0] = Ū .

Our previous analysis permits us to derive limits on the information content of signals

that suffices to sustain almost efficient trade with positive trade frictions. In other words,

we obtain a new measure for bounded signal information B < ∞ needed for “constrained

efficient screening” of assets with positive frictions r > 0.

Corollary 1 (of Propositions 1 and 2) For any (small) r > there exists (large) B <

∞ such that a stationary equilibrium generates higher welfare than the static Walrasian

market if ∆g > ∆h and ∆l ≥ ∆h and almost equal payoff if ∆h ≥ ∆g.

In the limit r → 0, equilibrium analysis can be conducted similarly as in the previous

section. The upper bound on signal informativeness implies that the payoffs of offering

xh cannot exceed

E[u|s, qu]− Ch,

which gives ∆h only when market quality is very high qc = 1. Another novelty is that in

the limit screening becomes ineffective with bounded signals, i.e., νθ(s, r) =
r

1−Fθ(s)
→ 0

as r → 0 for any s.

Still, if the lemons problem is not severe, the fixed point condition remains

1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

∆h +

(
1− 1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

)
(−∆g) = (11)

1

2 + νh(y, r) + νl(y, r)
∆h +

1

2 + νh(y, r) + νl(y, r)
(−∆g),

as with unboundedly informative signals. Because ∆h ≥ ∆g, we can easily see that a

32Because only the upper bound is binding, the lower information bound is redundant.
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fixed point exists for low r as the utility of offering xh on the lhs is Ul −Ch at y = 0 and

E[u|s, q0]−Ch at y = s whereas the utility from x0 on the rhs is Ū −Ch at y = 0 through

y = s. Payoffs thus remain as in Proposition 1 in the limit r → 0.

Remark 1 If ∆g ≤ ∆h, an efficient equilibrium with bounded signals exists for r → 0.

This contrasts with cases where the lemons problem is severe. The ineffectiveness of

screening low quality assets then implies that a stationary limit equilibrium cannot be

sustained without mixing.

Remark 2 If ∆g > ∆h, no pure equilibrium with bounded information exits for r → 0.

In other words, to make it unattractive for low quality sellers to wait for high prices, a

buyer needs to randomize between offering xl and xh at s = s , e.g., in proportions pl > 0

and ph > 0 with pl = 1− ph. This mixing is optimal for a buyer at s provided

1

1 + (1−Fh(s))ph
1−(1−Fl(s))(1−ph)

fl(s)
fh(s)

(s) (Uh − Ch) +

(
1− 1

1 + (1−Fh(s))ph
1−(1−Fl(s))(1−ph)

fl(s)
fh(s)

)
(Ul − Ch) =

1

1 + (1−Fh(s))ph
1−(1−Fl(s))(1−ph)

fl(s)
fh(s)

Vb +

(
1− 1

1 + (1−Fh(s))ph
1−(1−Fl(s))(1−ph)

fl(s)
fh(s)

)
(Ul − Vl) ,

Again, sufficient screening of low quality requires r
(1−Fl(s))ph

≥ ∆g

∆l
, which implies ph →

0 as r → 0. Trading at high prices thus becomes very difficult at the limit, increasing the

average market quality to the highest possible level, which gives a contradiction

∆h = Vb =
∆h

1 + r
(1−Fh(s))ph

.

Because (r, ph) → (0, 0), r
(1−Fl(s))ph

≥ ∆g

∆l
is incompatible with r

(1−Fh(s))ph
→ 0. To reduce

average market quality, low quality must trade less often; knife-edge dynamics represent

a possibility.

Thereby, if the lemons problem is severe and signals bounded, we need mixing both

in high price offers and in low price offers, much like previously in Moreno and Wood-

ers (2010) and Kaya and Kim (2018). Complete analysis lies beyond the scope of this

article. However, a fact of life remains that highly informative signals about assets are

observed with positive probability, albeit perhaps small, if waiting is costless. Charac-

terizing the equilibrium in these natural circumstances is hence crucial to understanding

market performance.

5 Conclusion

The main lessons from our analysis for practical market design are the following.
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1. Large enough trade surpluses ∆h > ∆g, for high quality, or ∆l > ∆h, for low quality,

are sufficient to guarantee (almost) efficient trade in markets with signals.

2. Information requirements supporting (almost) efficient trade are negligible for van-

ishing frictions r if ∆h > ∆g but increase proportional to 1
r

∆g+∆h

∆l−∆h
if ∆l > ∆h.

3. With sufficient information, trading problems thus persist only in markets infested,

at the same time, by (i) assets with high value differences (high ∆g) and (ii) assets

with low gains from trade (low ∆h and ∆l). Sorting out the assets with negative

contribution to market performance, e.g., by a fixed entry cost as in Heinsalu (2020)

or by splitting the markets as in Inderst and Müller (2002), can then help to restore

efficient trading incentives in the market.

We close by discussing some extensions and alternative modeling frameworks.

Coasian payoffs

Because uninformed buyers are given full bargaining power over informed asset sellers, it

is also interesting to study whether payoffs become Coasian as frictions disappear, i.e.,

whether buyers lose all commitment power to low prices and there will be efficient trade

in the limit. Fuchs and Skrzypacz (2022) argue that a form of the Coase conjecture often

survives even if trading is delayed. According to Fuchs and Skrzypacz (2022), translated

to our case a generalized Coase conjecture could also mean that buyers trade at prices

equal to (i) the highest seller valuation (i.e., here Ch) or (ii) the marginal buyer utility

(i.e., here E[U |s]).
Indeed, when dynamics are reversed, we do find that trade only occurs for high prices

Ch which both high and low quality sellers can accept. However, when dynamics are

standard, a buyer will price at marginal utility for s = y only when indifferent between

offering xl and xh. In other words, in our model buyers are not always (i) pricing at the

highest seller valuation Ch nor (ii) obtaining only the marginal buyer utility Vb. Thus,

payoffs are not Coasian even when they are efficient.33

Here payoffs are non-Coasian in the limit under standard dynamics, in short, because

signals grant the buyer an additional degree of commitment power, which is absent from

models where no information is available to a buyer. Buyers know that, by waiting for

a high signal, they can trade high quality with high certainty whereas, if they prefer not

to wait, they also have a chance to buy low quality for low prices. Thus, low quality

only obtains a payoff of ∆l−∆h > 0 under standard dynamics whereas buyers obtain the

33Yet, a mathematical fact remains that buyers obtain positive payoffs in our model only if there is
common knowledge of positive gains from trading high quality, i.e., Vb → 0 as ∆h → 0.
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payoff of ∆h > 0 if they trade high quality for xh and ∆l − (∆l −∆h) > 0 if they trade

low quality for xl.
34

Sellers offer prices

The signaling version of our model is studied more closely in Hämäläinen (2015). Focusing

on seller-optimal equilibria, this article observes that, if ∆l = λ is rather high relative

to ∆h = 1 − λ, a stationary equilibrium with standard dynamics exists for λ ≥ λ but,

if ∆h = 1 − λ is instead high relative to ∆l = λ, a stationary equilibrium with reversed

dynamics exists for λ ≤ λ. In between, for λ ∈ (λ, λ) both kinds of dynamics can be

supported in a stationary equilibrium.

Standard dynamics arise in an equilibrium where sellers are pooling for high signals

and separating for low signals. Reversed dynamics arise in an equilibrium where sellers

pool for high signals but return to the market for low signals.35 Seller-optimal prices

leave no surplus to buyers, i.e., Vb = 0: Pooling prices thus equal p(s) = E[U |s] whereas
separating prices are ph = Uh for high quality and pl = Ul for low quality. In the seller-

optimal case, p(s) and pl are accepted by buyers with probability one but, to prevent low

quality from mimicking high, ph can only be accepted with probability pl−Vl

ph−Vl
< 1.

Efficiency properties of equilibria are not analyzed for vanishing trade frictions in

Hämäläinen (2015). Reasonably, one would think it possible to employ the same cutoffs

as in this article, e.g., screen low quality much harder than high quality under a severe

lemons problem. A key question then is whether this would allow high quality trade

almost certainly for high prices p(s) (or ph) and low quality trade almost certainly for

low prices pl, implementing therefore an efficient equilibrium where Vl − Cl → ∆l and

Vh − Ch → ∆h as r → 0. Lemma 7 suggests this is possible under signaling as well.36

Different entry rates

Different entry flows eh for high quality and el = 1−eh for low quality, alter the stationary

market composition through the following equilibrium condition

eθ = Mθ(1−G−(xθ)).

34In the efficient equilibrium, the likelihood of the events adjusts so that buyers’ payoffs will be given
by ∆h/2 + (∆l − (∆l −∆h))/2 = ∆h > 0.

35In a so called semi-pooling equilibrium, bridging the pooling and separating cases, low quality sellers
mix between offering xl and x0 for s < y.

36The cutoff signal y and the associated screening, νl(y) → nl >> νh(y) → 0, should yield E[U |y] ≥
Vb + Vh(→ Uh) as r → 0 (high quality sellers offer pooling prices p(y) = E[U |y] for s = y) and Ul ≥
Vb + Vl(→ Ul) as r → 0 (low quality sellers offer separating prices pl = Ul for s < y); this may require
giving at least a small payoff to buyers Vb → 0 as r → 0 to prevent low quality sellers from obtaining
more than Ul − Cl for r → 0.
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Because buyers’ expectations qu and qc(s) of sellers assets thus change, the fixed point

condition under standard dynamics will transform into

∆h −
1− Fh(y)

1

fl(s)

fh(s)

el
eh

∆g = V ′
b +

1− Fh(y)

1

fl(s)

fh(s)

el
eh

(∆l − (V ′
l − Cl))

where

V ′
b =

∆h − (1− Fl)
el
eh
∆g + Fl

el
eh
(∆l − (V ′

l − Cl))

1 + el
eh

+ r el
eh

+ νh
,

V ′
l − Cl =

1

1 + νl
(∆g +∆l) .

The fixed point condition hence turns into

∆h =
∆h +

el
eh
∆l − el

eh

1
1+νl

(∆g +∆l)

1 + el
eh

.

for r → 0, y → 1 and νh → 0 and

∆h =
∆h +

el
eh
∆l

1 + el
eh

+ νh
.

for r → 0, y → 1 and νl → ∞.

We can thus see that the existence condition and properties of equilibria for standard

dynamics are unchanged. The payoffs are in the efficient equilibrium

Vb + el(Vl − Cl) = ∆h + el(∆l −∆h) = eh∆h + el∆l

and in the inefficient equilibrium Vl = ∆h and Vl −Cl = 0. An equilibrium with reversed

dynamics exists if the following static lemons condition holds

∆h ≥ el
eh

∆g.

Ergo, our assumption that different asset qualities enter the market at equal rates is

innocuous.
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Appendix

Proof of Lemma 1

We denote by Vθ ≥ Cθ the continuation value of a seller with quality θ, which gives the

opportunity cost of selling an asset of quality θ in the current meeting. Optimally, a

seller accepts any price p that is higher or equals Vθ, i.e., p ≥ Vθ. Knowing this buyers

offer either Vh (to target sellers with Vθ ≤ Vh) or Vl (to target sellers with Vθ ≤ Vl) or

p0 < minθ Vθ to pass the meeting without trading. Especially, offering a strictly higher
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price p > Vθ to target a seller with quality θ is dominated by lowering the price until it

equals the highest continuation value that lies below the offer.

Proof of Lemma 2

Denote by Vb the continuation valuation of a buyer and by q(s) a buyer’s belief after

seeing signal s, i.e., the probability that the buyer assigns to the random event that the

signal comes from a high quality asset. We show in the main text that q(s) is increasing

in s. We can therefore conjecture that, if there is a signal y such that

Vb = q(y)Uh + (1− q(y))Ul,

then the buyer optimally offers Vh for s ≥ y and min {Vl, Ul − Vb} for s < y. Otherwise,

y = 0 or y = 1. Note that the maximal price a buyer offers for the asset quality θ is

max {Uθ − Vb, 0} because acquiring the asset now gives Uθ but purchasing another asset

later yields Vb. It is assured that Vh < Uh − Vb because Vh = Ch but not certain that

Vl < Ul − Vb.

If a seller expects to trade for price p with the next buyer, the continuation value of

the seller solves the Bellman equation

Vθ(t) = cθdt+ pdt+ (1− dt) (1− rdt)Vθ(t+ dt)

Vθ(t) = (cθ + p) dt+
(
1− (1 + r)dt+ r(dt)2

)
Vθ(t+ dt)

Vθ(t+ dt) =
cθ + p

r + 1
+

1

r + 1

Vθ(t+ dt)− Vθ(t)

dt
+

rdt

r + 1
Vθ(t+ dt)

Vθ(t) =
cθ + p

r + 1
+

1

r + 1
V ′
θ (t)

Vθ(t) =
rCθ + p

r + 1
+

1

r + 1
V ′
θ (t)

as dt → 0. During the interval dt the seller receives a dividend with probability 1dt and

meets a buyer with probability 1dt. If the seller does not meet a buyer, time goes on and

the seller obtains the continuation value (1−rdt)Vθ(t+dt), where (1−rdt) ≈ e−rdt when dt

takes a small enough value. This implies that, in a stationary equilibrium, Vθ(t) =
rCθ+p
r+1

as V ′
θ (t) = 0. Vθ(t) is therefore a weighted average between Cθ and p. The optimality of

accepting the price p requires that p ≥ Vθ(t).

This shows that a high quality seller has a higher continuation value than a low quality

seller, Vh > Vl, because the dividend yield is higher ch > cl even in cases where the prices

p remain intact.37

We next show that the highest price offered by a buyer is Vh = Ch. The reasoning

37Here prices are higher when a seller has a higher quality asset because buyers offer higher prices for
higher signals.
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follows Diamond’s paradox kind of logic. Suppose instead that the highest price is strictly

larger p′ > Ch. Thus,

Vh ≤ rCh + p′

r + 1
< p′.

But then the buyer can lower the offer to p′′ ∈ (Vh, p
′), which the seller would still accept

with certainty. The original price offer p′ > Ch is thereby not optimal. The contradiction

proves the result.

Proof of Lemma 3

Lemma 3 follows from Lemmata 1–2 and the following analysis in the text once we note

that a buyer strictly prefers offering xl to x0 (x0 to xl) if Vb+(Vl−Cl) < ∆l (Vb+(Vl−Cl) >

∆l) but remains indifferent between xl and x0 if Vb+(Vl −Cl) = ∆l. Because xl = Vl and

x0 = max {Ul − Vb, 0}, we have that Vb + (Vl − Cl) = ∆l ⇐⇒ Ul − Vl = Vb ⇐⇒ Ul − xl =

Vb ⇐⇒ Ul − x0 = Vb.

Buyers’ conditional beliefs (3) are obtained directly from (2) by Bayesian updating.

We only have to consider the fact that, when buyers offer xl for s < y, high quality trades

with probability 1 − Fh(y) and low quality with probability 1 but, when buyers offer x0

for s < y, high quality trades with probability 1−Fh(y) and low quality with probability

1− Fl(y) in a meeting.

If buyers instead offer x0 for s < z, xl for s ∈ (z, y) and xl for s > y, high quality

trades with probability 1− Fh(y) and low quality with probability 1− Fl(z).

Proof of Lemma 4

Consider a stationary equilibrium with reversed dynamics in a market with a severe lemons

problem ∆h < ∆g.

Under reversed dynamics, buyers’ conditional beliefs at the cutoff signal s = y are

given by qc(y) =
(
1 + 1−Fh(y)

1−Fl(y)
fl(y)
fh(y)

)−1

.

By MLRP, qc(y) < 1/2 such that qc(y)(Uh − Ch) + (1 − qc(y))(Ul − Ch) < 0 in cases

where ∆h < ∆g.

But this implies that a buyer is not willing to make a high price offer xh = Ch at the

cutoff signal s = y, which contradicts the assumption that a stationary equilibrium with

reversed dynamics can exist for ∆h < ∆g.

Derivation of value functions

Continuation values, Vl and Vb, are derived by dynamic programming, by defining the

value functions (Bellman equations) related to buyers and low quality sellers’ optimal
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stopping problems.38

In what follows, Ub(s ≥ y) and Ub(s < y) denote the expected flow valuations of a

buyer associated with observing a high signal s ≥ y and a low signal s < y, respectively,

Ub(s ≥ y) :=qu (1− Fh(y)) (Uh − Ch)+

(1− qu) (1− Fl(y)) (Ul − Ch) ,

Ub(s < y) :=(1− qu)Fl(y)min {(Ul − xl) , x0} .

A buyer meets sellers at a rate equal to unity. The probability of meeting a high quality

seller and obtaining a high signal is qu (1− Fh(y)) whereas that of meeting a low quality

seller and receiving a high signal is (1 − qu) (1− Fl(y)). If the signal is above c, the

buyer offers xh, which both sellers accept. The probability of observing a low signal when

meeting with a high quality seller is quFh(y) and that of detecting a low signal when

meeting a low quality seller is (1− qu)Fl(y). If the signal is below c, the buyer offers the

minimum of xl (accepted by low quality) and x0 (rejected by all sellers).

Under standard dynamics, a buyer’s value function can be written as follows

Vb(t) = dt (Ub(s ≥ y) + Ub(s < y)) + dtquFh(y)Vb(t) + (1− (1 + r)dt)Vb(t+ dt)

(1 + r)Vb(t+ dt)− quFh(y)Vb(t) = Ub(s ≥ y) + Ub(s < y) +
Vb(t+ dt)− Vb(t)

dt

Vb(t) =
Ub(s ≥ y) + Ub(s < y)

1− quFh(y) + r
+

1

1− quFh(y) + r
V ′
b (t), (12)

as dt → 0; the second order terms (dt)2 are negligible and can thereby be ignored. In-

tuitively, a buyer trades under a high signal at rate Ub(s ≥ y) and under a low signal at

rate Ub(s < y). A buyer continues searching in the market either (i) if the buyer does not

meet any seller in the market, which will occur with probability 1−dt, or (ii) if the buyer

does not trade with a matched seller, happening with probability qcFh(y)dt. There is no

trade in a meeting if the buyer’s signal is low but the seller’s quality high.

Under reversed dynamics, a buyer’s value function can be defined instead as

Vb(t) = Ub(s ≥ y)dt+ (1− (1− qcFh(y)− (1− qc)Fl(y))dt) (1− rdt)Vb(t+ dt),

=
Ub(s ≥ y)

1− quFh(y)− (1− qu)Fl(y) + r
+

1

1− quFh(y)− (1− qu)Fl(y) + r
V ′
b (t). (13)

as dt → 0; the second order terms (dt)2 are negligible and can thereby be ignored. In this

case, there is no trade in a meeting if the signal is low, irrespective of the quality of the

seller’s asset. As before, a buyer will thus trade under a high signal at rate Ub(s ≥ y) but,

38We omit here the maximization over the strategy space because we have already described the
optimal strategies in Lemmata 1–2 and 3.
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when the signal is low, the trade rate is zero. As a result, a buyer continues searching in

the market either (i) if there is no meeting with a seller, with probability 1− dt, or (ii) if

there is no trade in a meeting, with probability (qcFh(y)− (1− qc)Fl(y))dt.

The ordinary differential equations (12) and (13) describe the evolution of Vb under

different equilibrium trade dynamics. In a stationary equilibrium, V ′
b (t) = 0 for all t,

because the evolution dynamics of Vb have then reached a steady-state.

In a stationary equilibrium with standard dynamics, we thus obtain that a buyer’s

continuation value is

Vb =
Ub(s ≥ y) + Ub(s < y)

1− quFh(y) + r
,

whereas a buyer’s continuation value in a stationary equilibrium with reversed dynamics

can be expressed as

Vb =
Ub(s ≥ y)

1− quFh(y)− (1− qu)Fl(y) + r
.

Moving on to sellers, the continuation value of holding a high quality asset is fixed at

Vh = Ch whereas the seller’s continuation value of keeping a low quality asset is given by

Vl(t) = dtcl + dt ((1− Fl(y))Ch + Fl(y)Vl(t)) + (1− (1 + r)dt)Vl(t+ dt)

(1 + r)Vl(t+ dt)− Fl(y)Vl(t) = cl + (1− Fl(y))Ch +
Vl(t+ dt)− Vl(t)

dt

Vl(t) =
rCl + (1− Fl(y))Ch

1− Fl(y) + r
+

1

1− Fl(y) + r
V ′
l (t), (14)

as dt → 0; the second order terms (dt)2 are negligible and can thereby be ignored.

Note that two events may happen to low quality sellers at each time point: (i) the

seller’s asset may generate a new dividend with payoff cl, or (ii) the seller may encounter

a new potential buyer with signal s. Both events follow a Poisson process with the rate

equal to unity. If the buyer’s signal is high, with probability 1− Fl(y), the seller obtains

Ch − Vl whereas, if the buyer’s signal is low, with probability Fl(y), the seller receives

Vl, irrespective of which trade dynamics prevail (i.e., with standard trade dynamics, a

buyer offers xl = Vl, which the seller accepts, and, with reversed trade dynamics, the

buyer offers, x0 < Vl, which the seller rejects). However, if neither event occurs, the seller

continues searching in the market, which gives the seller the continuation value, Vl(t+dt).

In a stationary equilibrium, Vl is hence given by

Vl(t) =
(1− Fl(y))Ch + rCl

1− Fl(y) + r
=

Ch − Cl

1 + r
1−Fl(y)

+ Cl.

The first term captures the value of trading low quality for a high price whereas the second

term denotes the valuation of dividends.
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Value functions for screening

The screening intensities

νh : νh(y, r) =
r

1− Fh(y)
,

νl : νl(y, r) =
r

1− Fl(y)
,

are increasing in r and y.

Rearranging (14) gives

Vl =
Ch + νlCl

1 + νl
=

Ch + νlCl

1 + νl
=

Ch − Cl + (1 + νl)Cl

1 + νl
,

= Ch −
νl

1 + νl
(Ch − Cl) = Ch −

νl
1 + νl

(∆g +∆l) ,

= Cl +
1

1 + νl
(Ch − Cl) = Cl +

1

1 + νl
(∆g +∆l) , (15)

which shows that, as a function of y, Vl(y) = Vl(νl(y, r)) is continuous and decreasing.

Note also that Vl(y) attains any value in between Vl(0) = (Ch+rCl)/(1+r) and Vl(1) = Cl

at some unique signal cutoff y ∈ (0, 1).

Assuming standard dynamics, (12) gives

Vb =
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g + (1− qu)Fl(Ul − Vl)

1− Fhqu + r

=
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g + (1− qu)Fl(Ul − Vl)

qu(1− Fh) + (1− qu)(1− Fl) + (1− qu)Fl + r

=
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r 1
qu(1−Fh)

=
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r 2−Fh

1−Fh

=
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r
(
1 + 1

1−Fh

) =
∆h − (1− Fl)∆g + Fl(Ul − Vl)

2 + r + νh
(16)

if Vb + (Vl − Cl) < ∆l and Vb ≥ 0, and

Vb =
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g + (1− qu)FlVb

1− Fhqu + r

=
∆h − (1− Fl)∆g + FlVb

2 + r + νh
=

∆h − (1− Fl)∆g

2− Fl + r + νh
(17)

if Vb + (Vl − Cl) ≥ ∆l and Vb ≥ 0.39

Above, we have thus expressed average quality qu in terms of y and Fl, Fh. To derive

39To make sure the later given fixed point correspondences FP and incentive condition correspondences
IC are everywhere continuous, we need both payoffs in our fixed point analysis for standard dynamics,
although only the former ones are consistent with the assumed dynamics.
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the first lines, we have used the fact that, assuming standard dynamics,

qu(1− Fh) =
1− Fh

2− Fh

,

(1− qu)(1− Fl) = (1− Fl)
1− Fh

2− Fh

,

(1− qu)Fl = Fl
1− Fh

2− Fh

.

Assuming reversed dynamics, (13) gives

Vb =
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g

1− quFh(y)− (1− qu)Fl + r

=
qu(1− Fh)∆h − (1− qu)(1− Fl)∆g

qu(1− Fh) + (1− qu)(1− Fl) + r

=
∆h −∆g

2 + r 1
qu(1−Fh)

=
∆h −∆g

2 + r 2−Fh−Fl

(1−Fl)(1−Fh)

=
∆h −∆g

2 + r
(

1
1−Fh

+ 1
1−Fh

) =
∆h −∆g

2 + νh + νl
(18)

for Vb + (Vl − Cl) > ∆l and Vb ≥ 0.

To obtain the first lines, we have used the fact that, assuming reversed dynamics,

qu(1− Fh) = (1− Fh)
1− Fl

2− Fh − Fl

,

(1− qu)(1− Fl) = (1− Fl)
1− Fh

2− Fh − Fl

.

Independent of which trade dynamics prevail, we can thus see that Vb(y) is continuous

for all y ∈ [0, 1], and first increasing in y and later decreasing in y. With standard dy-

namics, Vb(0) = max
{
0, ∆h−∆g

2+νh

}
and, with reversed dynamics, Vb(0) = max

{
0, ∆h−∆g

2+νh+νl

}
.

In both cases, Vb(y) → 0 as y → 1.

Proof of Lemma 5

Suppose trade takes place with probability one. By Lemmata 1–2 and 3 this implies that

y = 0. As a result, buyers offer Ch, which all sellers accept, for all signals s.

By the continuity of fl and fh, the buyers’ conditional beliefs (3) are continuous and,

according to Assumption 1, qc(0) = 0. The continuity of beliefs qc in signals s entails that

for any number ϵ > 0 there exists a number δ(ϵ) > 0 such that qc(s) < ϵ for all s < δ.

Accordingly, if we choose the number ϵ = Ch−Ul

Uh−Ul
= ∆g

∆h+∆g
> 0, then for all signals

s < δ(ϵ), beliefs qc(s) are so low that a buyer’s expected valuation for offering a high price
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is negative,

E(u|s)− Ch < ϵUh + (1− ϵ)Ul − Ch = ϵ∆h − (1− ϵ)∆g < 0,

which shows that a buyer strictly prefers offering min {x0, xl} to offering Ch for s < δ(ϵ).

This contradicts the assumption that trade takes place with probability one for all signals.

Proof of Lemma 6

Note first that for any y < 1

Vl(r) = Cl +
1

1 + νl(r)
(Ch − Cl) → Ch,

as r → 0, which means that

Vl + Vb > Vl > Ul

for low values of r because Ch > Ul. Thus, y → 1 as r → 0 is a necessary condition for

the existence of a limit equilibrium under standard trade dynamics. The general proof

below is somewhat more complex, though.

According to (1), the cutoff is the signal y solving the following fixed point condition,

Uh − Ch +
1−G−(xh)

1−G−(xl)

fl(y)

fh(y)
(Ul − Ch) = Vb +

1−G−(xh)

1−G−(xl)

fl(y)

fh(y)
max {Ul − xl, Vb} . (19)

This condition is obtained from (1) by rewriting the equation in terms of qc(y) and sup-

pressing the denominators 1 + 1−G−(xh)
1−G−(xl)

fl(y)
fh(y)

.

As a preliminary observation, note that for the lowest signal values s ∈ (0, 1), the lhs of

(19) is smaller than the rhs of (19). The lhs is negative for low enough s by Assumption 1.

The rhs is non-negative because Vb is non-negative by definition. Instead, for the highest

signal values s ∈ (0, 1), the lhs of (19) is larger than the rhs of (19) because the lhs is

positive for low enough s whereas the rhs approaches zero by Assumption 1 for Vb → 0

as y → 1. By the continuity of the condition (19) a fixed point y will thus exist.

The smallest fixed point corresponds to a cutoff signal at which the sides of (19) are

larger than zero. To see why satisfying (19) as 0 = 0 is impossible, consider signals y < 1

for which the lhs of (19) is equal to zero. This entails both (i) zero buyers’ payoff for

offering xh at s = y and (ii) positive buyers’ payoff for offering xh for s > y. As a result,

we can see from (12) and (13) that Vb > 0 because U(s < y) > Vb (irrespective of whether

Vb ≥ Ul − xl for which U(s < y) = Vb or Vb < Ul − xl for which U(s < y) > Vb).

Lemma 8 shows later in more detail that, there is both a (higher) signal y < 1 which
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satisfies (19) as

Uh − Ch +
1−Gh(xh−)

1−Gl(xl−)

fl(y)

fh(y)
(Ul − Ch) = Vb +

1−G−(xh)

1−G−(xl)

fl(y)

fh(y)
(Ul − xl) ,

and a (lower) signal y > 0 which satisfies (19) as

Uh − Ch +
1−Gh(xh−)

1−Gl(xl−)

fl(y)

fh(y)
(Ul − Ch) =

(
1 +

1−Gh(xh−)

1−Gl(xl−)

fl(y)

fh(y)

)
Vb.

For standard dynamics, the latter condition results in40

∆h − (1− Fh)
fl
fh
∆g

1 + (1− Fh)
fl
fh

=
∆h − (1− Fl)∆g

2 + νh + r − Fl

= Vb, (20)

whereas, for reversed dynamics, the same condition implies

∆h − 1−Fh

1−Fl

fl
fh
∆g

1 + 1−Fh

1−Fl

fl
fh

=
∆h −∆g

2 + νh + νl
= Vb. (21)

We consider these cases one by one next. For (weakly) standard dynamics, observe

that (20) can be written as

α∆h − (1− α)∆g = α′∆h −
1− Fl

1− Fl + r + νh
(1− α′)∆g,

where

α =
1

1 + (1− Fh(y))
fl(y)
fh(y)

,

α′ =
1

2 + νh + (r − Fl(y))
.

For any y < 1, 1−Fl

1−Fl+r+νh
→ 1 as r → 0. To satisfy (20), we thus need either y → 1 as

r → 0 or α → α′ as r → 0 (or both).

Setting α = α′ results in

(1− Fh(y))
fl(y)

fh(y)
= r + νh + (1− Fl(y))

(1− Fh(y))
fl(y)

fh(y)
− (1− Fl(y)) = r

2− Fh

1− Fh

1

2− Fh

[
(1− Fh(y))

2 fl(y)

fh(y)
− (1− Fh(y)) (1− Fl(y))

]
= r, (22)

40We suppress the arguments of fθ(y)’s, Fθ(y)’s and νθ(y, r)’s to abbreviate the expressions.
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where 1
2−Fh

> 1/2 whereas the function inside the square brackets is strictly positive by

MLRP for all y < 1. By L’Hopital’s rule, (1−Fl(y))/(1−Fh(y)) → fl(y)/fh(y) as y → 1,

which shows that the inside of the brackets approaches zero as y approaches one (but

generally not otherwise). Thus, α → α′ as r → 0 cannot hold unless y → 1 as r → 0.

For (weakly) reversed dynamics, notice that (21) can be written as

β∆h − (1− β)∆g = β′∆h −
1

1 + νh + νl
(1− β′)∆g,

where

β =
1

1 + 1−Fh(y)
1−Fl(y)

fl(y)
fh(y)

,

β′ =
1

2 + νh + νl
.

For any y < 1, 1
1+νh+νl

→ 1 as r → 0. To satisfy (21), we thus need either y → 1 as r → 0

or β → β′ as r → 0 (or both).

Setting β = β′ results in

1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
= 1 +

r

1− Fh(y)
+

r

1− Fl(y)

1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
− 1 = r

(
1

1− Fh(y)
+

1

1− Fl(y)

)
1− Fh(y)− Fl(y)− Fh(y)Fl(y)

2− Fh(y)− Fl(y)

[
1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
− 1

]
= r (23)

Note that 1−Fh(y)−Fl(y)−Fh(y)Fl(y)
2−Fh(y)−Fl(y)

> 0 whereas the function inside the square brackets is

strictly positive by MLRP for all y < 1.

By L’Hopital’s rule, (1 − Fl(y))/(1 − Fh(y)) → fl(y)/fh(y) as y → 1, which shows

that the function in the brackets approaches zero as y approaches one (but generally not

otherwise). Thus, β → β′ as r → 0 cannot hold unless y → 1 as r → 0.

Proof of Lemma 7

We start by rewriting νl(r, s) as

r

1− Fl(s)︸ ︷︷ ︸
νl(s,r)

=
r

1− Fh(s)︸ ︷︷ ︸
νh(s,r)

1− Fh(s)

1− Fl(s)
,

and study the limit as s → 1. Because Fθ(s) → 1 as s → 1, we can use L’Hopital’s rule

to have
1− Fh(s)

1− Fl(s)
→ fh(s)

fl(s)
→ ∞,
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as s → 1. This equals saying that for any M > 1 there exists a signal sl < 1 such that

νh(sl, r)M
2 < νl(sl, r) (24)

for any r and for s > sl. We then turn to

νθ(s0, r) =
r

1− Fθ(s0)
,

which clearly approach zero as r → 0 and infinity as r → ∞. For any M > 1 and for

sl < 1 we can thus find r0 ∈ (0,∞) and s0 ∈ (0, sl) such that

νh(sl, r0) =
r0

1− Fh(sl)
= 1/M, (25)

νl(s0, r0) =
r0

1− Fl(s0)
= 1/M. (26)

The result follows from (24), (25) and (26).

Lemma 8 For any large enough M > 1, 0 < y0(r) < yl(r) < 1 for all r = 1/M .

1. Under standard dynamics, y(r) ≥ yl(r) where y1l (r
1), y2l (r

2), ... → 1 as r1, r2, ... → 0

along a sequence for which νl(y
1
l (r

1)), νl(y
2
l (r

2)), ... → nl ≥ ∆g/∆l.

2. Under reversed dynamics, y(r) = y0(r) where y10(r
1), y20(r

2), ... → 1 as r1, r2, ... → 0

along a sequence for which νl(y
1
0(r

1)), νl(y
2
0(r

2)), ... → n0 = 0.

Proof of Lemma 8

To search for the lowest y0, we continue the analysis from (22) and (23), which gives

1

2− Fh

[
(1− Fh(y))

fl(y)

fh(y)
− (1− Fl(y))

]
=: ν ′

h, (27)

1− Fh(y)− Fl(y)− Fh(y)Fl(y)

2− Fh(y)− Fl(y)

[
1

1− Fl(y)

fl(y)

fh(y)
− 1

1− Fh(y)

]
=: ν ′

h.. (28)

We consider signal cutoffs y′ for which buyers would be indifferent between offering x0

and xh at s = y′.

Under (weakly) standard dynamics, we can employ (27) and express ν ′
l := νl(y

′) as

ν ′
l =

1− Fh(y
′)

1− Fl(y′)
ν ′
h

ν ′
l =

1− Fh(y
′)

1− Fl(y′)

1

2− Fh

[
(1− Fh(y))

fl(y)

fh(y)
− (1− Fl(y))

]
ν ′
l =

1− Fh(y
′)

2− Fh(y′)

[
1− Fh(y)

1− Fl(y′)

fl(y)

fh(y)
− 1

]
→ 0, as y → 1.
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Under (weakly) reversed dynamics, we can apply (28) and rewrite ν ′
l := νl(y

′) as

ν ′
l =

1− Fh(y
′)

1− Fl(y′)
ν ′
h

ν ′
l =

1− Fh(y
′)

1− Fl(y′)

1− Fh(y)− Fl(y)− Fh(y)Fl(y)

2− Fh(y)− Fl(y)

[
1

1− Fl(y)

fl(y)

fh(y)
− 1

1− Fh(y)

]
ν ′
l =

1− Fh(y)

(1− Fh(y)) + (1− Fl(y))

[
1− Fh(y

′)

1− Fl(y)

fl(y)

fh(y)
− 1

]
→ 0, as y → 1.

This shows that, irrespective of which trade dynamics prevail, y′ → 1 as r → 0 along a

sequence for which νl(y
′) stays close to zero.

Turning to incentive conditions, note that (Vl − Cl) ≤ ∆l is a necessary condition for

Vb + (Vl − Cl) ≤ ∆l.

(Vl − Cl) ≤ ∆l

1

1 + νl
(∆g +∆l) ≤ ∆l

∆g +∆l ≤ (1 + νl)∆l

∆g ≤ νl∆l

∆g

∆l

≤ νl (29)

Next, consider y′′ defined by (29) as

ν ′′
l := νl(y

′′) =
r

1− Fl(y′′)
=

∆g

∆l

.

We can see that y′′ → 1 as r → 0 along a sequence for which νl(y
′′) remains bounded

away from zero.41

Comparing ν ′
l to ν ′′

l we thus find that y0(r) < yl(r) for low r because y0 → y′ as r → 0

and yl ≥ y′′.

To complete the proof, we also need to show that 0 < y0(r) and that yl(r) < 1. This

is easy. First, consider the incentives for offering x0 as opposed to xl, i.e., the roots of

IC0l : IC0l(y) = Vb(y) + (Vl(y)− Cl)−∆l.

We have shown above that Vl is decreasing in y and (Vl(0)− Cl) = ∆g +∆l, (Vl(1)−
Cl) = 0, and Vb + (Vl − Cl) → 0 as y → 1, which shows by continuity that yl ∈ (0, 1).

41The bound is not tight. Indeed, it is straightforward to show that νl(yl) → nl =
∆g+∆h

∆l−∆h
>

∆g

∆l
as

r → 0.
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Second, consider the fixed point condition that defines the cutoff y,

∆h + (1− Fl(y))
fl(y)

fh(y)
(−∆g) = Vb + (1− Fl(y))

fl(y)

fh(y)
max {Ul − Vl, Vb} ≥ 0,

with standard dynamics and

∆h +
1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
(−∆g) = Vb +

1− Fh(y)

1− Fl(y)

fl(y)

fh(y)
max {Ul − Vl, Vb} ≥ 0,

with reversed dynamics.

Clearly, because fl(y)
fh(y)

→ ∞ as y → 0, the lhs is (strictly) negative and the rhs is

(weakly) positive in any sufficiently small neighborhood of y = 0. Similarly, as fl(y)
fh(y)

→ 0

as y → 1, and Vb(y) → 0, Vl(y) → Cl as y → 1, the lhs is positive and the rhs is negative

in a neighborhood of y = 1. Thus, the result y0 ∈ (0, 1) obtains by continuity.

Figure 4: Illustration of Lemma 8.

Figure 4 illustrates the effect of different tentative cutoffs y on incentives to offer

different prices x0, xl and xh. The green line depicts a function y 7→ FPh(y) (for “fixed

point condition”) which is positive for cutoffs for which a buyer prefers offering xh over

min {x0, xl}. FPh(y) will thus cross the s-axis at y0. The pink line defines a function

y 7→ IC0l(y) (for “incentive condition”) which is positive for cutoffs for which a buyer

prefers offering x0 over xl for s < y. IC0l(y) therefore crosses the s-axis at yl. Both of

these lines are generally non-monotone.

For IC0l, this is because the effect of screening on a buyer’s payoff is first positive

and later negative whereas the effect on a low quality seller’s payoff is negative. IC0l =

Vb + Vl − ∆l can hence be first increasing (as Vb increases faster than Vl decreases) and

thereafter decreasing (when both Vb and Vl are decreasing). Indeed, we find that a single-

crossing property must hold for incentives of offering x0 over xl. Thereby, the pink IC0l
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curve crosses the s-axis once from above and divides the cutoffs into (i) lower ones y < yl

for which dynamics would be reversed and (ii) higher ones y > yl for which dynamics

would be standard.

Instead, the green FPh curve is increasing for low screening, y < yl, crossing the s-axis

therefore at y0 < yl already for relatively low screening. As detailed in Proposition 1, this

low root of FPh may for suitable parameters correspond to an equilibrium with reversed

dynamics. However, as the benefit of trading low quality for a low price xl begins to affect

the payoff of a buyer Vb, FPh generally decreases for y ∈ (yl, sh) and ultimately increases

for y ∈ [sh, 1], possibly thus crossing the s-axis for a second and a third time. These

higher roots of FPh would then represent equilibria with standard dynamics, outlined in

Proposition 2.

We proceed by proving Proposition 2 first and then move to Propositions 1 and 3.

Proof of Proposition 2

Step I. Screening over different cutoff sequences (y(ri))ri→0

By Lemma 7, for any M > 1 there exist s0 < sl < sh and r < 1/M such that

νl(s0) = νh(sl) = 1/M < M ≤ νl(sl) = νh(sh).

By Lemma 8, for any M > ∆l/∆g and r < 1/M there exist y0 and yl such that

νh(y0) < νl(y0) < νh(yl) ≤ 1/M < ∆g/∆l ≤ νl(yl),

where the cutoffs are defined by Lemma 8 in such a way that, if y = y0, a buyer is

indifferent between x0 and xh and, if y = yl, a buyer is indifferent between x0 and xl.

For any sequence r1, r2, ... → 0 we thus obtain five related cutoff sequences

(s0(r
i), sl(r

i), sh(r
i), y0(r

i), yl(r
i))i=1,2,... with different associated screening intensities.

Because s0 → 1 and y0 → 1 as r → 0, we also know that

fl
fh

(y(r)) < 1/Nf for all r < 1/M, y = y0, yl, s0, sl, sh,

1− Fθ(y(r)) < 1/NF for all r < 1/M, y = y0, yl, s0, sl, sh,

where Nf → ∞ and NF → ∞ as M → ∞.

Step II. Existence of fixed point sequences (y(ri))ri→0

According to (19), y satisfies the following fixed point condition under standard trade

dynamics

FPh : FPh =
∆h − (1− Fh)

fl
fh
∆g

1 + (1− Fh)
fl
fh

−
Vb + (1− Fh)

fl
fh

max {Ul − Vl, Vb}
1 + (1− Fh)

fl
fh

= 0, (30)
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where Vb is defined by (16) for Vb + Vl ≤ Ul and by (17) for Vb + Vl > Ul and Vl is defined

by (15). Under these assumptions, FPh is continuous in y and in r.

We proceed by proving that (30) is satisfied at some y1(r) ∈ (yl(r), sl(r)) and at some

y2(r) ∈ (y1(r), sh(r)) for all low enough (fixed) values of r. As FPh is continuous in y, it

suffices to show that

FPh(y, r) > 0, for all y ∈ (y0(r), yl(r)), (31)

FPh(y, r) < 0, at y = sl(r), (32)

FPh(y, r) > 0, at y = sh(r). (33)

Case 1. To show that (31) holds, we consider (20) satisfied by y0

α∆h − (1− α)∆g − α′∆h +
1− Fl

1− Fl + r + νh
(1− α′)∆g = 0, (34)

where

α(y) =
1

1 + (1− Fh(y))
fl(y)
fh(y)

,

α′(y) =
1

1 + (1− Fl(y)) + νh(y, r) + r
.

Lemma 6 shows that y0(r) → 1 as r → 0. Lemma 8 proves that α(y0) → α′(y0) as

r → 0. Further, the terms multiplied by (1 − α) or (1 − α′) become negligible for low r

because fl/fh(y) → 0, 1 − Fl(y(r)) → 0, and νh(y(r)) → 0 as r → 0 for all y ∈ (y0, yl).

To sign the lhs of (34) for low values of r, we can hence focus on

α− α′,

or, equivalently, on the difference between the numerators

(1 + (1− Fh)
fl
fh

)− (1 + (1− Fl) + r + νh).

Differentiating this expression with respect to y results in

−fh
fl
fh

+ (1− Fh)
∂

∂y

fl
fh

+ fl −
∂

∂y
νh = (1− Fh)

∂

∂y

fl
fh︸ ︷︷ ︸

<0

− ∂

∂y
νh︸ ︷︷ ︸

>0

< 0,

which shows that α− α′ is increasing in y for y ∈ (y0, yl).
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To show that (32) and (33) also hold true, we proceed by proving that

∆h − (1− Fh)
fl
fh

∆g < Vb + (1− Fh)
fl
fh

max {Ul − Vl, Vb} at y = sl (35)

∆h − (1− Fh)
fl
fh

∆g > Vb + (1− Fh)
fl
fh

max {Ul − Vl, Vb} at y = sh. (36)

Case 2. We can see from above that (35) is satisfied providing that

Vb(sl) =
∆h − (1− Fl(sl))∆g + Fl(s0)(Ul − Vl(sl))

2 + r + νh(sl)
> ∆h.

Given the assumptions in Step I, Vb(sl) is clearly larger than

V b(sl(M)) =
∆h − 1/NF∆g + (1− 1/NF )(∆l − ∆g+∆l

1+M
)

2 + 1/M + 1/M
.

Taking the limit as M → ∞, we thus observe as required that

V b(sl(M)) → ∆h +∆l

2
> ∆h

and

V b(sl(M)) + (V l(sl(M))− Cl) →
∆h +∆l

2
< ∆l.

Case 3. Additionally, we can see that (36) is satisfied at y = sh for any high enough

values of M because the assumptions made in Step I imply here that

∆h − 1/(M2)∆g >
∆h − (1− Fl(sh))∆g + Fl(sh)∆l

2 +M +M
+ 1/(M2)(∆l −

∆g +∆l

1 +M
)

∆h >
∆h − (1− Fl(sh))∆g + Fl(sh)∆l

2 +M +M︸ ︷︷ ︸
→0, as M→∞

+
1

M(1 +M)
(∆l +∆g)︸ ︷︷ ︸

→0, as M→∞

.

Figure 5 shows the graph of FPh(y) for r = 0.05 (Figure 5a) and r = 0.005 (Figure

5a) illustrating how decreasing r affects the position of fixed points y1 and y2 (’red dots’)

with respect to y0 (’green line’) and yl (’pink line’). Especially, the gap between y0 and

yl > y0 remains whereas the gap between yl and y1 > yl vanishes as r → 0.

Details of equilibria with (∆h,∆g,∆l) = (0.5, 1.5, 1) and r = 0.05 (as in Figure 5a):

1st equilibrium at y1 ≈ 0.894: Vb(0.894) ≈ 0.450 and Vl(0.894) ≈ 0.466 such that

Vb + 0.5(Vl − Cl) ≈ 0.683 < 0.5(∆h +∆l) = 0.75,

2nd equilibrium at y2 ≈ 0.974: Vb(0.974) ≈ 0.498 and Vl(0.974) ≈ 0.034 such that

Vb + 0.5(Vl − Cl) ≈ 0.515 < 0.5(∆h +∆l) = 0.75.

Step III. Price offers at y1 and y2

One might still wonder whether the solutions to (30) that we have identified correspond
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(a) r = 0.05

(b) r = 0.0005

Figure 5: FPh for (∆h,∆g,∆l) = (0.5, 1.5, 1).

to equilibria with standard dynamics or whether the preference for offering xl over x0 (as

with standard dynamics) might change again to a preference for offering xl over x0 (as

with reversed dynamics). However, if that was the case, (35) and (36) imply a buyer is

indifferent between offering xh and x0 at y1 and at y2. This means that (34) holds at

y1 ∈ (yl, sl) and at y2 ∈ (y1, sh).

But then our assumption made in Step I will imply that νh(y
1) < 1/M and νh(y

1) <

1/M . As we can see following the proof of Lemma 7, νh(y
1) < 1/M and νh(y

1) < 1/M

implies first α → α′ as M → ∞ which implies νl(y
1) → 0 and νl(y

2) → 0 as M → ∞.

This contradicts our assumptions in Step I. As a result, we can conclude that the cutoffs

y1 and y2 must be such that a buyer prefers to offer xl over x0 at each of them as required

by standard trade dynamics.

Step IV. Limit payoffs at y1 and y2

It remains to calculate the payoffs in the limit equilibria where y = y1 ∈ (yl, sh) and

y = y2 ∈ (y1, sh) satisfy (30). These limit payoffs depend on νl(y, r) and νh(y, r), which

assume different values for (y, r) = (y1(r), r) and (y, r) = (y2(r), r) for low r, although

both y1(r) → 1 and y2(r) → 1 as r → 0.
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Case 1. The payoffs at y1(r) for r → 0.

We have shown that νh(y
1) < 1/M but νl(y

1) ∈ (∆g

∆l
,M). Applying (16) and (30), the

equation defining y1 thus becomes for high values of M , approximately,

∆h−
1

NfNF

∆g =
∆h − 1/NF∆g + (1− 1/NF )(∆l − ∆g+∆l

1+νl(y1)
)

2 + 2/M
+

1

NfNF

(
∆l −

∆g +∆l

1 + νl(y1)

)
.

We are interested in the limiting payoffs as M → ∞, which gives us

∆h =
∆h +∆l − ∆g+∆l

1+νl(y1)

2

=⇒νl(y
1) =

∆g +∆h

∆l −∆h

> 0

=⇒Vl − Cl =
∆l +∆g

1 + νl(y1)
= ∆l −∆h

=⇒Vb =
∆h +∆l − (∆l −∆h)

2
= ∆h

=⇒Vb + Vl − Cl = ∆h +∆l −∆h = ∆l

=⇒W = Vb +
1

2
(Vl − Cl) = ∆h +

1

2
(∆l −∆h) =

∆h +∆l

2
.

Two results are notable. First, the limiting equilibrium payoffs will approach from below

the payoffs at which a buyer is indifferent between offering x0 and xl for s < y. Second,

the limiting equilibrium payoffs are efficient, equaling the payoffs from immediate trading.

Moreover, the limiting payoffs are also higher than the static Walrasian payoffs ∆l/2.

Case 2. The payoffs at y2(r) for r → 0.

We first make a guess that y2 ∈ (sl, sh) such that νl(y
2) > M but νh(y

2) ∈ (1/M,M).42

The equation defining y2 thus becomes for high values of M , approximately,

∆h −
1

NfNF

∆g =
∆h − 1/NF∆g + (1− 1/NF )(∆l − ∆g+∆l

1+M
)

2 + 1/M + νh(y2)
+

1

NfNF

(
∆l −

∆g +∆l

1 +M

)

42The other possibility would be νl(y
2) > M and νh(y

2) > M , which would result in lower limit
payoffs.
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We concentrate on the limiting payoffs as M → ∞, which here gives us

∆h =
∆h +∆l

2 + νh(y2)

=⇒νh(y
1) =

∆l −∆h

∆h

> 0

=⇒Vl − Cl = 0

=⇒Vb =
∆h +∆l

1 + ∆l

∆h

= ∆h

=⇒Vb + Vl − Cl = ∆h < ∆l

=⇒W = Vb +
1

2
(Vl − Cl) = ∆h <

∆h +∆l

2
.

Now, the limiting payoffs are inefficient, below the payoffs from immediate trading. How-

ever, the limiting equilibrium payoffs may still exceed the static Walrasian payoffs ∆l/2.

r y1 Vb Vl y2 Vb Vl

0.01 0.953 0.488 0.468 0.995 0.526 0.009
0.001 0.985 0.487 0.510 0.999 0.599 0.003
0.0001 0.995 0.501 0.494 1.000 0.529 0.000

Table 1: Comparison of equilibria with (∆h,∆g,∆l) = (0.5, 1.5, 1).

Table 1 compares equilibrium payoffs for different r ≤ 0.01.

Proof of Proposition 1

Under reversed trade dynamics, the cutoff signal y satisfies the following fixed point

condition and incentive condition

FPh : FPh =
∆h − (1− Fh)

fl
fh
∆g

1 + (1− Fh)
fl
fh

− Vb = 0,

IC0l : IC0l(y) = Vb(y) + (Vl(y)− Cl)−∆l ≥ 0.

In this case, the existence of equilibrium follows directly from Lemma 8, which proves

that there exists y0 at which a buyer is indifferent between xh and x0 and prefers offering

x0 over xl.

Equilibrium uniqueness is given by the proof of Proposition 2 (Step II, Case 1), which

shows that the fixed point y of F0h is unique because F0h is increasing when IC0l ≥ 0 is

satisfied.

We can derive payoff limits as before. We know from Lemma 8 that y0 → 1 along a
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path such that νh < νl < 1/M , where M is a large value:

=⇒Vl − Cl =
∆l +∆g

1 + 1/M
→ ∆l +∆g

=⇒Vb =
∆h −∆g

2 + 1/M + 1/M
→ ∆h −∆g

2

=⇒W = Vb +
1

2
(Vl − Cl) =

∆h −∆g

2
+

∆l +∆g

2
=

∆h +∆l

2
.

The limiting payoffs are thereby efficient and equal the static Walrasian payoffs.

Proof of Proposition 3

By Lemma 4, we know that an equilibrium cannot feature reversed dynamics if the static

lemons problem is severe. Because we assume in this case that ∆g > ∆h, an equilibrium

must thus feature standard dynamics. Under standard trade dynamics, the cutoff signal

y satisfies the following fixed point condition and incentive condition

FPh : FPh = ∆h −
1

NfNF

∆g − Vb −
1

NfNF

max {Ul − Vl, Vb} = 0, (37)

IC0l : IC0l(y) = Vb(y) + (Vl(y)− Cl)−∆l ≤ 0. (38)

However, satisfying both conditions at the same time is impossible for sufficiently low

r if ∆h > ∆l.

To see why, note that, by Lemma 8, satisfying the incentive condition IC0l ≤ 0 for

low enough r requires high enough y > yl(r) > y0(r), where y0(r) → 1 as r → 0.

As a result, applying the notation in the proof of Proposition 2 (Step I), the fixed

point condition FPh = 0 for y > y0 and r < 1/M can be approximated by

∆h −
(

1

NfNF

)
︸ ︷︷ ︸

→0

∆g − Vb −
(

1

NfNF

)
︸ ︷︷ ︸

→0

max {Ul − Vl, Vb} = 0,

where 1/Nf → 0, 1/NF → 0 as M → ∞.

We also show in the proof of Proposition 2 (Step II Case 1.) that FPh > 0 for

y ∈ (y0, yl) and r < 1/M . By the continuity of FPh(y), it is thus easy to see that

satisfying FPh(y) = 0 for y ∈ (y0, yl) and r < 1/M is impossible without assuming that

Vb ≥ ∆h, which would violate IC0l(y) ≤ 0.

This also covers the case of weak incentives IC0l = 0. However, Proposition 3 may

mislead some readers into thinking that the above shows that we cannot obtain an equi-

librium where buyers offer two prices xh and xl but does not preclude the existence of an

equilibrium with three price offers xh, xl and x0.

To convince all readers, we thus show that offering three prices would result in a
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contradiction as y0 and yl require different screening intensities νl(y, r) for low r, as shown

in Lemma 8. So, let us try to construct an equilibrium where y = y0 = yl such that a

buyer would be willing to propose x0 or xl for s < y0 = yl (i.e., x0 for s ∈ (0, z) and xl

for s ∈ (z, y)) and xh for s > y0 = yl.

The probability of trading for low quality is given by 1− Fl(z), which we also use in

the following notation ν0 =
r

1−Fl(z)
< r

1−Fh(y)
= νh(y). We can thus express the valuation

of buyers as

Vb =
qu(y, z)(1− Fh(y))∆h − (1− qu(y, z))(1− Fl(y))∆g

1− qu(y, z)Fh(y)− (1− qu(y, z))Fl(y) + r

∆h − ν0(z)
νl(y)

∆g

1 + ν0(z)
νl(y)

+ r 1
qu(y,z)(1−Fh(y))

∆h − ν0(z)
νl(y)

∆g

1 + ν0(z)
νl(y)

+ r
(

1−Fl(z)
(1−Fl(z))(1−Fh(y))

+ 1−Fh(y)
(1−Fl(z))(1−Fh(y))

)
∆h − ν0(z)

νl(y)
∆g

1 + ν0(z)
νl(y)

+ ν0(z) + νh(y)
(39)

where

qu(y, z) =
1

1 + 1−Fh(y)
1−Fl(z)

.

By definition, yl satisfies the incentive condition IC0l(y) = 0, which can be written as

Vb =
∆l − 1

νl(y)
∆g

1 + 1
νl(y)

,

whereas y0 satisfies the fixed point condition FPh(y) = 0, which can be expressed as

Vb =
∆h − ν0(z)

νl(y)
m(y)∆g

1 + ν0(z)
νl(y)

m(y)
.

Above,

m(y) =
fl(y)

fh(y)

1− Fh(y)

1− Fl(y)
.

Note that m(y) is larger than unity by MLRP but approaches one as y → 1. As shown

by Lemma 8, satisfying the incentive condition requires that y → 1. Thus, there exists

no cutoff y = y0 = yl that satisfies all the conditions for low r.
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Documentation for Figures 1, 4 and 5

Figures 1, 4 and 5 are plotted using the function forms as follows:

fh(s) = 2s, Fh(s) = s2, fl(s) = 2− 2s, Fl(s) = 2s− s2,

νh(y, r) =
r

1− Fh(y)
’blue line’

νl(y, r) =
r

1− Fl(y)
’red line’

y = y0(r) ’green line’

y = yl(r) ’pink line’

Proof of Corollary 1

Propositions 1 and 2 demonstrate that any (sufficiently large) information bound B < ∞
is associated with y = s < 1 and r > 0 on the path (y, r) → (1, 0) to the efficient limit

equilibrium.

If ∆g > ∆h and ∆l ≥ ∆h, the payoffs in the static Walrasian market equal ∆l/2 and

those in the stationary equilibrium with small frictions

Vb =
∆h − (1− Fl(y))∆g + Fl(y)(Ul − Vl)

2 + r + νh(y, r)
+

(Vl − Cl)/2 =
∆g +∆l

2 + 2νl(y, r)
.

Instead, if ∆g ≤ ∆h, the payoffs in the static Walrasian market equal ∆h/2 + ∆l/2 and

those in the stationary equilibrium with small frictions

Vb = Vb(y) =
∆h −∆g

2 + νh(y, r) + νl(y, r)
+

(Vl − Cl)/2 =
∆g +∆l

2 + 2νl(y, r)
.
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Knife-edge dynamics

An equilibrium with knife-edge dynamics for vanishing frictions r → 0 is given by y,

z < y, and (Vb, Vl) satisfying the following system

qc(s) =
1

1 + 1−Fh(y)
1−Fl(z)

fl(s)
fh(s)

, for s ∈ [0, 1]

qc(y) (Uh − Ch) + (1− qc(y)) (Ul − Ch) = Vb, (40)

Vb =
∆h

1 + νh(y, r)
,

Vl = Cl +
∆g +∆l

1 + νl(y, r)
,

Vb + (Vl − Cl) = ∆l. (41)

Note that we can set y → 1 because it otherwise becomes impossible to satisfy Eq.

(41). Eq. (41) further implies that ∆h

1+νh(y,r)
+ ∆g+∆l

1+νl(y,r)
= ∆l. Joining Eqs. (40) and (41),

we thus obtain that

qc(y)∆h + (1− qc(y)) (−∆g) =
∆h

1 + νh(y, r)
= ∆l −

∆g +∆l

1 + νl(y, r)
. (42)

As (y, r) → (1, 0), market quality depends on the evolution of z(y, r) as frictions

disappear. In principle, z(y, r) could assume any values between 0 and y → 1. Depending

on z(y, r), buyers’ beliefs

qc(y) =
1

1 + 1−Fh(y)
1−Fl(z)

fl(s)
fh(s)

thus span all the values from 1/2 (attained by letting z(y, r) → y as (y, r) → (1, 0)) to 1

(attained by letting z(y, r) → 0 as (y, r) → (1, 0)). This allows some leeway in equilibrium

construction because any triplet (qc, νh, νl) satisfying Eq. (42) for 1/2 ≤ qc ≤ 1 and

0 ≤ νh ≤ νl ≤ ∞ defines a stationary limit equilibrium for (y, r) → (1, 0).

∆h

1 + νh
= qc∆h + (1− qc)(−∆g)

∆h

1 + νh
= ∆l −

∆g +∆l

1 + νl
.

For example, by letting νl → ∞, we immediately find an equilibrium with knife-edge

dynamics given by

νh → ∆h

∆l

− 1, and qc →
∆l +∆g

∆h +∆g

, as (y, r) → (1, 0),
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for cases ∆g > ∆h > ∆l where Proposition 3 shows that no equilibrium with standard or

reversed dynamics exists.

This equilibrium is inefficient as Vb +(Vl −Cl)/2 = ∆l <
∆l+∆h

2
. To derive an efficient

equilibrium, we thus require that

Vb =
∆l +∆h

2
− ∆g +∆l

(1 + νl)2

∆l +∆h

2
− ∆g +∆l

(1 + νl)2
= ∆l −

∆g +∆l

1 + νl
,

which gives 1
1+νl

as a solution to the second-order equation

− (∆g +∆l)

(
1

1 + νl

)2

+ (∆g +∆l)
1

1 + νl
+

∆h −∆l

2
= 0.

Presuming ∆h > ∆l, the equation has a positive solution

1

1 + νl
=

− (∆g +∆l) +
√
(∆g +∆l)

2 + 2 (∆g +∆l) (∆h −∆l)

2 (∆g +∆l)
=

−1 +
√

1 + 2∆h−∆l

∆g+∆l

2
,

Inserting this solution into Eqs. (42) gives

νl =

√
1 + 2∆h−∆l

∆g+∆l
+ 3√

1 + 2∆h−∆l

∆g+∆l
− 1

νh =
∆h −∆l +

∆g+∆l

2

(√
1 + 2∆h−∆l

∆g+∆l
− 1
)

∆l − ∆g+∆l

2

(√
1 + 2∆h−∆l

∆g+∆l
− 1
)

qc =
∆h

∆h +∆g

1

1 + νh
+

∆g

∆h +∆g

∈ (1/2, 1)

The existence of efficient knife-edge dynamics requires that νh < νh and qc ∈ (1/2, 1).

The latter condition is clearly satisfied for all νh ≥ 0 if ∆g > ∆h.

It is also easy to confirm that the former one is satisfied, e.g., if ∆g = 3 > ∆h = 2 >

∆l = 1 for which νl ≈ 19.2 > νh ≈ 2.6 and qc ≈ 0.71 ∈ (1/2, 1).

More general analysis demonstrates that νh < νl is equivalent to

y + 4

y
>

∆h −∆l +
∆g+∆l

2
y

∆l − ∆g+∆l

2
y

⇐⇒ − (∆g +∆l) y
2 − (2∆g +∆h) y + 4∆l > 0

where y =
(√

1 + 2∆h−∆l

∆g+∆l
− 1
)
. The lhs of the inequality represents a downward sloping
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parabola, with both a negative root and a positive root, which transforms our conditions
for νl < νh into

−

√(
∆g +∆h/2

∆g +∆l

)2

+ 4∆l −
∆g +∆h/2

∆g +∆l
<

√
1 + 2

∆h −∆l

∆g +∆l
− 1 <

√(
∆g +∆h/2

∆g +∆l

)2

+ 4∆l −
∆g +∆h/2

∆g +∆l
.
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