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Abstract

We provide a theory of dynamic oligopoly pricing with heterogeneous price technolo-

gies, captured by the presence of trackers (on the firm-side) and shoppers (on the

consumer-side) who can costlessly follow market prices. Our paper contributes to

reconciling the variation in observed price dynamics. Due to the limit pricing resem-

bling price behavior of non-trackers, the equilibrium price distribution can feature

gaps and an atom. A price war may erupt, collusion is possible, or prices can remain

unchanged for a while. Since the equilibrium price distribution is contingent on the

number of trackers, our study puts forth several testable hypotheses to explore the

impact of trackers. We also find that, although tracking diminishes consumer welfare

and incentives for searching, trackers only benefit from the wider presence of other

trackers up to a point.
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1 Introduction

Homogeneous goods and close substitutes are frequently available at persistently dissim-

ilar prices across firms (Baye et al., 2006a,b; Chandra and Tappata, 2011; Kaplan and

Menzio, 2015; Gorodnichenko and Talavera, 2017). Classic sales models, following Varian

(1980), provide a partial explanation of equilibrium price dispersion based on a firm’s

uncertainty about consumer price information (Bergemann et al., 2021) or commitment

to search prices (Stahl, 1989). By randomizing between high (monopoly) prices and

lower (discount) prices, firms can alternate in targeting both uninformed and informed

consumers, without knowing which consumers they face. Nevertheless, the firm-side un-

certainty about competitor price information or its commitment to follow market prices

has been relatively overlooked. If a rival can instantaneously match any price, but the

firm itself must commit to its price for a while, only monopoly pricing to uninformed

consumers or Bertrand pricing over informed consumers can be sustained. Consequently,

price dispersion wanes.

Firms are known to track market prices fairly intensively, basically, by accessing the

same information channels as consumers, e.g., shopping apps or comparison sites. Con-

tinuous monitoring has the advantage of enabling a firm to respond immediately to any

change in market prices.1 Nonetheless, data show that rival firms may also opt to keep

their prices fixed for a prolonged time (Figure 1).2 The goal of this paper is to understand

how uncertainty about competitors’ price information and price commitment affects the

prices of homogeneous products in search markets where consumers are generally hetero-

geneously informed about prices.

To achieve this goal, our paper develops a framework where both consumers and firms

make price observations. A fraction of consumers (i.e., shoppers) and a share of firms (i.e.,

trackers) can view all prices in the market at zero cost. Non-shoppers (e.g., consumers

with positive search costs) observe one price quote. Non-trackers (e.g., firms with positive

menu costs) only observe their own price. In a dynamic pricing game, non-trackers commit

to prices at t = 0 and keep them fixed until t = 1; trackers can change their prices at

any t = 1
n
, ..., n−1

n
. A consumer may arrive in the market at any time, when her need for

purchasing a product emerges.3

1There exist various tools that enable firms to track rival prices, receive alerts of price drops, allow
automated repricing, etc. (https://visualping.io/blog/top-tools-competitor-price-tracking/,
accessed Nov 29, 2022).

2The sector inquiry of the European Commission (EC) found that 53 % of retailers tracked competing
prices; 67 % of trackers used automated software to follow market prices while 78 % of software users
adjusted their prices to rival prices. A possible scenario expressed in the memo is that small firms act
as price leaders while big e-commerce firms commit to follow. (https://ec.europa.eu/competition/
cartels/icn/szekely.pdf, accessed Feb 24, 2023.)

3Model time frame reflects the time for which non-trackers’ prices remain fixed. This model time
window could equally well be a minute or a month. The model can be repeated to allow also non-trackers
to change their prices later.
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We find that price behavior changes quite remarkably when we allow some firms to

observe changes in market prices almost in real-time. Only non-trackers price in mixed

strategies. Trackers’ prices inherit the appearance or randomness from the non-trackers’

prices they follow but can remain constant for extended periods as long as non-trackers

keep their prices fixed.4 As a novelty, the equilibrium price distribution may also display

gaps at certain intermediate prices and has an atom at the monopoly price.

Because equilibrium pricing is shaped by non-trackers’ incentives to restrict their ex-

posure to trackers’ collusion, the most interesting price strategies require at least three

firms whose types remain uncertain initially. The prospect of competing with another

non-tracker entails, by standard reasoning, that a non-tracker optimally prices in ran-

domized strategies. By contrast, trackers can easily learn rival types and observe rival

prices, which allows a tracker to undercut non-trackers and collude with trackers. How-

ever, the incentives for undercutting are obviously lower if there are many trackers sharing

collusive profits.5 As we demonstrate in this work, non-trackers may thus choose to set

such low prices that only a tracker who does not face competition from rival trackers

would be willing to price below them. Instead, multiple trackers would rather choose

the monopoly price and concentrate on targeting their captives. This equilibrium market

segmentation gives rise to the price atom. Another novelty we find is that, because higher

prices expose non-trackers to significantly stronger competition from colluding trackers,

there is a gap in the equilibrium price distribution between the higher prices that at most

r rival trackers would undercut and the lower prices that at most r−1 rival trackers would

undercut, etc.6 Moreover, when competition from trackers is harshest, non-trackers may

only employ the lower prices that colluding trackers are not willing to undercut, resulting

in a pattern akin to limit pricing.7 This does not arise in static models of sales.

These new model features prove helpful for reconciling certain salient features of ob-

served price dynamics in a simple unified framework. To illustrate the puzzling variation

of pricing patterns encountered in oligopolistic online markets, Figure 1 depicts the price

movements of books available at Amazon compared to the best third-party prices.8 Au-

thentic price patterns are generally much richer than the ones predicted by the repeated

application of clearinghouse search models, such as Burdett and Judd (1983).

1. Fixed price. Prices fluctuate between a high (regular) price and a low (discount)

price but habitually remain unchanged for a while at each price level (Figs. 1a).

2. Atom(s) and gap(s). Some price have, on the one hand, a tendency to revert to a

4In general, as expected, equilibrium price dispersion arises without future punishments if there are
also non-shoppers and non-trackers.

5Or worse, rival trackers willing to initiate a price war cycle.
6In a triopoly, r = 2 but the idea generalizes with more firms.
7The mechanism is however different from the standard one (Milgrom and Roberts, 1982) because

we do not study market entry deterrence.
8Source: Camelcamelcamel (https://camelcamelcamel.com, accessed: Jan 30 and Mar 23, 2023).
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particular level repeatedly after a brief change while, on the other hand, persistently

shunning certain intermediate levels (Figs. 1a-d).

3. Pricing below rival. Prices appear to be randomized either a lot below or a bit below

a higher-priced rival who does not respond by cutting its own price (Fig. 1b).

4. Cyclic price wars and possible tacit collusion. Rival firms keep alternately undercut-

ting each other’s prices. Thereafter, either a price increases and the cycle restarts

or prices remain fixed close to each other for a while (Fig. 1c).

5. Classic mixed prices. Rival firms’ prices fluctuate apparently independently over

the same interval (Fig. 1d).

(a) Fixed price, price atoms, and gap (b) Mixing below rival

(c) Price war cycle and market sharing (d) Mixing on interval

Figure 1: Third party (blue) and Amazon prices (green) at Camelcamelcamel.com.

The final pattern comes closest to the predictions of the basic Varian (1980) model

whereas the price war cycles resemble classic Edgeworth cycles (Maskin and Tirole, 1988).

Price rigidity is generally regarded as a natural feature of tacit collusion (Green and Porter,

1984; Athey et al., 2004; Jullien and Rey, 2007). However, a distinctive characteristic of

this price data is that a firm may keep its price fixed at an intermediate level while its

rivals alter theirs (e.g., Fig. 1c). This is consistent with our model of heterogeneous

price commitments but otherwise hardly explained.9 Moreover, we see that a firm who

9Of course, many price patterns still remain unexplained by our purposely stylized model, which fails
to account, e.g., learning over product life-cycle (Bergemann and Välimäki, 2006), information costs of
price adjustment Alvarez et al. (2011), and strategic timing of purchase choices (Garrett, 2016).
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is a likely tracker (Amazon), underprices its competitors when its rivals have high prices

but keeps its price fixed at a higher level when rival prices remain lower (e.g., Fig. 1b).

This pattern with a gap and an atom is predicted by our model of heterogeneous price

commitments. By contrast, gaps fail to arise in most clearinghouse models of search and

atoms only arise in models of asymmetric firm prominence (Narasimhan, 1988; Wilson,

2010; Hämäläinen, 2018).10 A straightforward model extension shows that heterogeneous

price commitments arise in our framework if firms have dispersed menu costs.

Regulatory implications

Pricing and tracking can either be implemented by people or delegated to algorithms.

Price monitoring and price algorithms are currently under scrutiny for their potentially

significant role in facilitating collusion in electronic marketplaces.11 We contribute to

the discussion by offering a theory of pricing with heterogeneous price technologies and

showing how differences among firms impinge on existing theories of dynamic oligopoly

pricing, the telltale signals of competitive vs. collusive pricing, and the sustainability of

collusive behavior.

Our paper describes a mechanism based on firm heterogeneity that naturally limits

collusive prices in a mixed oligopoly where both trackers and non-trackers are present at

the same time. In general, we observe that a tracker either (i) charges the monopoly price

targeting its captive non-shoppers; (ii) undercuts the lowest current rival price to attract

all shoppers; or (iii) colludes with trackers to a price that slightly undercuts the lowest

price among non-trackers. As a conclusion, because the lowest price among non-trackers

defines an upper bound on the prices that appeal to shoppers, we find that collusive prices

lie strictly below the monopoly price in a market with trackers and non-trackers. Under

heterogeneous price commitments, a notable feature of pricing is, therefore, that collusive

prices remain low. This restricts the profitability of collusion.

The presence of non-trackers can also render tracker collusion harder to sustain because

non-trackers may commit to low prices to restrict their exposure to competition, paving

the way for multiple equilibria, with varying degrees of collusiveness. The least collusive of

these equilibria resemble limit pricing, garnering a higher profit for non-trackers against

multiple trackers. Non-trackers then charge such inexpensive prices that only a single

tracker is willing to meet them. If the price is low enough, multiple trackers are not

interested in colluding at any price below it because the demand gain from shoppers

would be split between the trackers. Rival trackers are therefore better off if they each

10But see Hämäläinen (2022) for atomistic pricing in symmetric equilibria.
11The European Commission (EC) identifies price monitoring in retail price maintenance (RPM) as a

special concern. For example, the EC imposed a total of 111 million EUR in fines on consumer electronics
companies in 2018, for using sophisticated price monitoring algorithms to follow retail prices, allowing
them to intervene fast in cases where retailers decreased prices.
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concentrate on selling to their captives at the monopoly price. Unlike collusive pricing,

this concerted monopoly pricing coincides with low tracker profit.

Our results stretch the conventional idea that optimal collusive prices must be high and

simultaneous monopoly pricing by rival firms indicative of collusion. This has practical

relevance for, e.g., the auditing of pricing algorithms for collusion (Calvano et al., 2020)

and updating collusive pricing detection rules (Harrington, 2018). Overall, our results

show that consumers are generally hurt by the presence of firms whose price commitments

have a shorter duration. However, because the negative price effects of tracking are

broader than collusion-related, regulators cannot tackle the problems solely by looking

for signals of collusion.

Regulating the frequency of price change offers one alternative that should perhaps be

tested carefully in the lab. For empirical research, our research suggests an immediate way

to test how strongly the market prices are affected by tracking:12 In a market with few

trackers, the equilibrium generates a smooth price histogram with a tiny gap at middle

prices and a tiny mass at the highest price. Consumer welfare in then relatively high.

When trackers is numerous, our testable hypothesis is that the distribution of prices is

almost binary with a large gap between the lowest and highest prices. This case suggests

reduced consumer surplus.

Literature contribution

This work contributes to the theory of dynamic oligopoly pricing and algorithmic pricing

under consumer search. To clarify our contribution to the literature and highlight the main

new features, we next contrast our results with the established theories of oligopolistic

pricing.

Commitment in dynamic oligopoly pricing. Maskin and Tirole (1988) provide a general

theory of dynamic oligopoly with an alternating offer setup, where all price commitments

are short-lived. Edgeworth cycle and collusive pricing arise as Markov-perfect equilib-

ria. In this paper, we extend the analysis by allowing for prolonged commitments and

consumer heterogeneity, which profoundly alters equilibria. The value of commitment

and costs of non-commitment are pointed out perhaps earliest by Stackelberg (1934) in

his criticism of Cournot competition and by Coase (1972) in his treatment of dynamic

monopoly. Our model features imperfectly observed price commitments considered more

thoroughly in Van Damme and Hurkens (1997). Van Damme and Hurkens (1996) prove

that mixed equilibria are commitment robust when no firm has a first-mover advantage.13

Here, heterogeneity on each market side sustains mixed strategies, although non-trackers

can benefit from moving before trackers. In the classic static models of Butters (1977);

12For an example and review of how the testing might proceed, see Berck et al. (2008).
13Endogenous price leadership is considered in Van Damme and Hurkens (2004) and Deneckere and

Kovenock (1992). In our model, non-trackers are always price leaders.
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Varian (1980); Burdett and Judd (1983); Stahl (1989) price dispersion arises due to het-

erogeneous consumer price information. The persistence of equilibrium price dispersion

in a dynamic setting where firms become aware of rival prices remains an open research

question.

Dynamic price dispersion with consumer search. Myatt and Ronayne (2019) offer a

theory of stable equilibrium price dispersion, based on commitments to list prices that can

only be discounted but not increased. Unlike here, only two pure pricing strategies prevail

in equilibrium: a leader firm sets a discount price whereas the followers set a regular price.

In our model, equilibrium price dispersion is driven by non-trackers’ mixed strategies but

persists long-term because of trackers’ pure strategies. The general problem with stable

equilibrium price dispersion is spelled out in Lahkar (2011). That is, evolution favors

cycles. We sidestep this problem by endowing some firms with the quite realistic power to

commit to prices for a moment. Heidhues and Kőszegi (2008) demonstrate that consumer

loss aversion can eliminate price dispersion and lead to focal (uniform) price equilibria.

Dynamic algorithmic pricing. The closest article to ours in the literature is perhaps

Brown and MacKay (2023) who study competitive pricing by pricing algorithms that

either have different pricing frequencies or allow for automatic updating in response to

the rival price. Prices are proved to lie between Bertrand and Stackelberg prices, which

shows that algorithms can increase prices without collusion; collusion is possible as well.

The paper abstracts from consumer heterogeneity and introduces firm heterogeneity very

differently. The remaining literature is focused on symmetric price-setting technologies

among firms. Calvano et al. (2020, 2021) observe that pricing algorithms quickly learn

to charge collusive prices sustained by brief punishment phases. Assad et al. (2020) ob-

serve that duopoly prices increase only if both firms adopt algorithmic pricing techniques.

Cason and Friedman (2003) and Cason et al. (2021) provide laboratory evidence of price

dispersion, price correlation and cyclic prices in the classic Burdett and Judd (1983) noisy

search model. Zhang and Feng (2011) identify cyclical bid adjustments in search engine

advertising data.

Collusive price strategies with consumer search. Petrikaitė (2016) demonstrates for

homogenous products that cartels become less stable as search costs increase. Schultz

(2017) observes that profits from collusion increase in consumer information but decrease

in firm information.14 Montag and Winter (2020) consider the welfare effects of manda-

tory price disclosure. The main difference in our paper is that we study markets with

equilibrium price dispersion, where collusive prices generally remain below other market

prices limiting collusive profits. A few recent papers study collusion with price disper-

sion. In de Roos and Smirnov (2020) intertemporal price dispersion facilitates collusion

14In a classic paper, Green and Porter (1984) show that less transparent demand reduces collusive
profits by increasing the prevalence of punishments. In follow-up work, Garrod and Olczak (2021) find
that more transparent supply boosts collusive profits by restricting the duration and frequency of pun-
ishments.
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by obfuscating the price comparisons made by consumers. In Shadarevian (2022) welfare

considerations result in dispersed collusive prices with patient firms and variable costs.

The article is organized as follows. The basic (duopoly) model is spelled out in Section

2. Section 3 describes duopoly equilibria and Section 4 considers triopoly equilibria.

Section 5 concludes by discussing some extensions and alternative model assumptions.

Proofs are contained in the Appendix.

2 Model

Our model can be regarded as a marriage between the Varian (1980) model of hetero-

geneous price information and the Maskin and Tirole (1988) model of alternating price

proposals.

We initially study oligopoly price competition in a market with two firms i = 1, 2 and

a consumer. Each firm is selling one product, of which the consumer intends to buy one.

The surplus of trading a product is fixed at unity. A firm’s profit share is given by its

price πi = pi ∈ [0, 1] and the consumer utility denoted by u(pi) = 1− pi ∈ [0, 1].15

Shoppers and non-shoppers. Firms are uncertain regarding (i) the consumer’s price

information and (ii) the rival’s price technology. The consumer has two possible price

information types. A shopper observes both firms’ prices whereas a non-shopper only

observes one of the prices in the market at random. The probability that the consumer

is a shopper is µ > 0.

Trackers and non-trackers. Firms have two feasible price technology types, which

affect their ability to commit to prices. A tracker observes the rival’s price and can reset

its price following the price observation. A non-tracker either cannot observe the rival’s

price or, equivalently, cannot reset its own price. The likelihood that a firm is a tracker

is denoted by τ > 0.

Heterogeneous price commitments. Our analysis is focused on studying firm behav-

ior over the time interval [0, 1], whose length corresponds with the time for which a

non-tracker’s price remains fixed. To simplify, we assume that all non-trackers choose

their prices simultaneously at the beginning of the interval. By contrast, trackers can

change their prices multiple times during this interval while non-tracker prices remain

unchanged.16 The consumer may arrive in the market at any time during the interval and

make a purchase decision based on the prevailing market prices, which ends the game.

This substitutes for discounting.17

15The interpretation is that all products either remain homogeneous (e.g., a market for a certain book)
or have known qualities qi and production costs ci = qi − 1 (e.g., a market for branded ware).

16A reasonable assumption is that also a non-tracker, ultimately, observes the rival price and readjusts
its own, e.g., if firm types reflect firms’ unequal menu costs of tracking rivals and changing prices.

17Alternatively, we could assume that demand is uniformly distributed over the interval of interest
and a measure of consumers purchases a product during each subinterval dt = [t1 − t0] ⊂ [0, 1].
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The following timeline describes the order of moves more specifically. (Non-)tracker i

refers to firm i whose type turns to be a (non-)tracker. Rival firms are commonly indexed

by j.

1. Time t = 0.

(a) Firm and consumer types realize.

(b) Non-trackers commit to prices pi0.

2. Times t = 1
n
, . . . , n−1

n
(for n odd).

(a) Prices become observable. Tracker 1 can reset its price in odd periods t = k
n
,

for k = 1, 3, . . . , n− 2. Tracker 2 can choose new price in even periods t = k
n
,

for k = 2, 4, . . . , n− 1.

(b) A consumer enters the market with probability 1
2
. A shopper buys from the

firm whose current price is the lowest in the market and a non-shopper chooses

the firm at random.

(c) If a consumer arrives, the game ends and payoffs realize. If a consumer does

not arrive, the game proceeds to the next period.

3. Time t = 1. The game ends and zero payoffs realize.

Hence, while the ex ante expected market demand from t = 0 to t = 1 is one consumer,

it is also possible that no consumer arrives at the market during t ∈ [0, 1]. This eventuality

becomes increasingly likely as the game proceeds to late periods.

Trackers can change their prices alternately on a grid at t ∈
{

1
n
, ..., n−1

n

}
. We start

from a discrete time pricing game, where n = ∞, and thereafter focus on the continuous

limit, where n → ∞.18

It should be noted that the timing reveals to a tracker whether its rival is a tracker or

a non-tracker whereas a non-tracker chooses its price while it is uncertain about its rival.

We characterize the equilibrium for a single pricing game over [0, 1].

Extending the analysis is possible, but with certain notable caveats. The first issue

is that if a firm plays against the same rival over multiple intervals, such as [0, 1], [1, 2],

etc., then a non-tracker will obviously learn whether its rival is a tracker. This affects

equilibrium pricing in the later price games.19 In reality, uncertainty about rival type

is likely to persist because of three reasons: (i) uncertainty about the timing of rivals’

tracking technology adoption, (ii) possible new upgrades, and (iii) entry and exit of firms.

18Our discrete time analysis corresponds with the finite horizon and our continuous time analysis with
the infinite horizon of related dynamic oligopoly price games where t ∈ [0,∞), such as Bergemann and
Välimäki (2006).

19See the closing remarks for a discussion.
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For instance, an earlier tracker who commits to prices for a duration of 1
n
becomes a non-

tracker in relative terms if its rival installs a tracking update that decreases its commitment

time to 1
nm

. The second obvious problem is that non-trackers may collude in a repeated

game, whereas our analysis only covers non-collusive price equilibria among non-trackers.

This is interesting in its own right and provides a useful point of comparison to collusive

behavior.

3 Duopoly equilibrium

To solve the model from the back to the beginning, we start by considering a game with

two trackers, who choose prices for t = 1
n
through t = 1 in Section 3.1. We proceed in

Section 3.2 to a tracker’s optimal pricing against a non-tracker, where the price remains

fixed after t = 2
n
, and derive in Section 3.3 a non-tracker’s optimal mixed price strategy,

where the price commitment is made at t = 0. The unconditional distribution of tracker

prices is derived in Section 3.4 and the division of equilibrium payoffs investigated further

in Section 3.5.

3.1 Tracker’s problem against tracker

Discrete time game. We focus on Markov-perfect equilibria where the state variable is

the current rival price pj, which remains fixed throughout [t − 1
n
, t + 1

n
).20 In a discrete

time price game, out-of-equilibrium-path behavior is well-defined, overruling incredible

threats. We denote the continuation value of tracker i at time t by V i
t .

The Bellman equation of a tracker can be defined as

V i
t (p

j) = max
pi


1
n
1−µ
2
pi +

(
1− 1

n

)
V 1
t+1(p

i), for pi > pj

1
n
1
2
pi +

(
1− 1

n

)
V 1
t+1(p

i), for pi = pj

1
n
1+µ
2
pi +

(
1− 1

n

)
V 1
t+1(p

i), for pi < pj

with the terminal condition V i
t (p

j) = 0 (i) for any t > t̄ following the arrival of the

consumer in the market at t = t̄, and (ii) for any t ≥ 1, possibly followed by new

independent price commitments at t = 1.21

Note that, if a consumer arrives in the market during [0, 1], a firm’s demand varies

between 1−µ
2

(only captives) and 1+µ
2

(also shoppers). Because the firm can obtain at least

the profit of 1−µ
2

by holding its price constant at unity and at most 1+µ
2
p by setting a

20This is without loss because feasible prices remain unchanged throughout, and current payoff only
depends on current prices and whether a consumer has arrived.

21The game can thus be thought of as repeated as long as interaction between subsequent games
remains limited enough to prevent collusion among non-trackers.
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lower price p < 1, we see that a firm has no incentive to undercut a rival price pj that lies

below the low price bound p = 1−µ
1+µ

, as defined by

1 + µ

2
p =

1− µ

2
.

This price cutoff becomes useful for characterizing optimal symmetric tracker behavior.

Lemma 1 For sufficiently large n and small ϵ, the symmetric best response of a tracker

is given by

pi(pj) =

pj − ϵ, for pj > p

1, for pj ≤ p

in the final period t = n−1
n
, and by

pi(pj) =


pj − ϵ, for pj ∈ (1− µ, 1]

pj − ϵ, for pj ∈ (p, 1− µ]

1, for pj ≤ p

in all other periods 1
n
< t < n−1

n
.

We thus find that a tracker optimally undercuts the rival price (i) by the minimal

recognized discount ϵ if the rival price exceeds 1 − µ and (ii) drops the price to the low

price bound 1−µ
1+µ

if the other price is at most 1 − µ. The reason is that prices remain

constant for two consecutive periods in our alternating offers game. Thereby, the profit

from a marginal price discount, ϵ < pj − p, is

1

n

1 + µ

2
(pj − ϵ) +

1

n

(
1− 1

n

)
1− µ

2
(pj − ϵ)

because the rival offers a smaller price in the coming period. However, the profit from a

large price discount, pj − p, is

1

n

1 + µ

2
p+

1

n

(
1− 1

n

)
1 + µ

2
p

since this price will not be undercut in the next two periods. A tracker therefore trades

off the current profit loss 1+m
2

(pj−ϵ−p) from captives and shoppers and the next period’s

profit loss from captives 1−m
2

(pj − ϵ − p) to the next period’s profit gain from shoppers

µ(pj − ϵ− p). As a result, a firm becomes more willing to drop its price to p as the rival

price pj decreases over time. Shoppers hasten the timing. Figure 2 describes this price

cycle as an automation, thus demonstrating the potential for automated implementation,

as in Brown and MacKay (2023).

Because firms have captive demand, our derived cycle differs from the standard Edge-
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1 1− ϵ 1− 2ϵ . . . 1− µ p

small discounts large discount

price increase

Figure 2: Price cycle automation in the subgame between two trackers.

worth cycle of Maskin and Tirole (1988) in that prices are initially cut by the minimum

amount but drop directly to the bottom from a mid-level, thereafter, followed by the usual

lenience phase in which prices bounce to the monopoly level and the cycle restarts.

As profits increase in current prices, which imply higher prices in the future – Lemma

2 below – we find that a tracker optimally undercuts its rival by as small a discount as

possible if the rival price exceeds 1−µ. Moreover, to commit both firms to as high future

prices as possible, tracker 1 chooses the monopoly price in the starting period t = 1.

Lemma 2 V i
t (p

j) is increasing in pj for any 2
n
< t < n−1

n
and any 1− µ < pj < 1.

Consistent with existing literature, we take ϵ as zero and suppose as a tie-break rule

that shoppers buy from the most recent firm to alter its price.22 A unique price equilibrium

hence arises, prices being close to the monopoly level.

Proposition 1 In a discrete time price game, the unique equilibrium price sequence

equals (1, 1 − ϵ, 1 − 2ϵ, ..., 1 − nϵ). As nϵ → 0, the expected tracker profit is 1
2
and the

expected consumer surplus 0.

Because the consumer is equally likely to arrive in odd and even time periods, both

firms have the same probability of winning any shoppers in this case. Each tracker thus

obtains the profit of 1
2
, leaving no surplus to consumers.

Continuous time game. As the time between price adjustments approaches zero, new

collusive price patterns emerge with appropriate penalties. The hardest penalty would

be reverting to p for the rest of the game if the rival deviates from the collusive price.

The rival would then respond by setting the monopoly price, thus limiting both firms to

the standard duopoly profits, i.e., 1−µ
2
1 = 1+µ

2
p.23 However, here this punishment lacks

credibility because the penalizing firm would have an incentive to undercut the rival.

Instead, the equilibrium price cycle in Figure 2 turns to be an applicable punishment,

started from a lowish price.

Lemma 3 (Folk theorem) In a continuous time price game, any price sequence where

22We thank Andrew Rhodes for this insight. See the Appendix for limit order analysis of ϵ and n.
23This idea appears in (Myatt and Ronayne, 2019) where firms commit not to undercut list prices.
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firms’ continuation payoffs exceed (1 − t)1−µ
2

at t can be implemented in equilibrium for

nϵ → 0.

In particular, any collusive price p ∈ (1−µ, 1) is sustained under the threat of reverting

to a punishment cycle started at a lower price p ∈ (1 − µ, 1). The start price of the

punishment cycle matters. By starting the cycle at price p > 1 − µ at time t, firms

acquire the payoffs (1 − t)p
2
. Firms keep undercutting each other over the cycle but, as

nϵ → 0, the price level p barely budges over [t, 1].

Proposition 2 In a continuous time price game, maximum tracker payoffs 1
2
and

minimal consumer surplus 0 obtain in a collusive equilibrium where firms set the monopoly

price.

Proof. A sketch of proof is above.

It is noteworthy that trackers’ high profits cannot be wholly attributed to collusive

price behaviour. Comparing Propositions 1 and 2, we can see that equilibrium profits

remain high both in the discrete time game, where the price pattern is cyclic, and in the

continuous time game, where firms set collusive prices. This observation is reminiscent

of Brown and MacKay (2023) who find that automated price setting leads to supra-

competitive prices without collusion. Here this happens through a sequence of negligible

price concessions and, in their model, because prices reside between the Bertrand and

Stackelberg levels.

3.2 Tracker’s problem against non-tracker

A tracker’s problem against a non-tracker turns out to be much simpler. Because a non-

tracker cannot retaliate, a tracker undercuts a non-tracker by the minimum discount ϵ if

the price of the non-tracker exceeds the low price bound p.

Clearly, by setting the monopoly price unity, a tracker receives the expected profit

πi =
1− µ

2

from non-shoppers who observe its price but fail to observe the price of its rival. Instead,

by undercutting the rival price pj by the minimum recognized discount ϵ, a tracker obtains

πi =

(
1− µ

2
+ µ

)
(pj − ϵ)

by selling to its captives and to shoppers who compare its price pj − ϵ to the rival pj.

Thus, a tracker strictly benefits from undercutting the price of a non-tracker iff pj−ϵ > p.

Note that, because a non-tracker commits to its price for the rest of the game, a rival

tracker has no reason to change its price after setting it. In a market with a tracker i and

13



a non-tracker j, optimal prices thus remain constant over [ i
n
, 1].

3.3 Non-tracker’s problem

A non-tracker chooses its price without knowing whether it faces a tracker or another

non-tracker. Because a non-tracker does not follow the market but sporadically, it is

important for it to account for uncertainty about rival types. The prospect of facing

another non-tracker makes it optimal for a non-tracker to price in mixed strategies. In

general, the payoff to a non-tracker for setting a price above p can be expressed as

πi =


(

1−µ
2

+ µ(1− τ)(1− F (pi)) + µ(1−τ)
2

1 {p = pj} (pi)
)
pi, if pi > p,(

1−µ
2

+ µ
)
pi, if pi = p,

(1)

presuming that the price of another non-tracker follows the distribution F (F denotes the

cdf and f the related pdf; 1 {p = pj} (p) indicates a potential tie).

The main difference from the usual Varian (1980) model is that here a tracker is

presumed to undercut any price pi > p. As a result, a non-tracker can only sell to a

shopper (i) by setting a (mixed) price pi > p that lies below the price of a rival non-

tracker, or (ii) by setting a (limit) price pi = p that a rival tracker is not willing to

undercut. It follows that the lowest price p′ > p that a non-tracker applies in competition

with another non-tracker is given by

πi =

(
1− µ

2
+ µ(1− τ)

)
p′ =⇒ p′ =

1− µ

2(1− τ)µ+ 1− µ
∈
(
1− µ

1 + µ
, 1− µ

)
. (2)

The support of the equilibrium price distribution thus contracts from the standard

[p, 1] to [p′, 1] due to the presence of trackers. The intuition is that the lowest prices

are no longer optimal for a non-tracker because uncertainty about the rival type renders

its demand less elastic. In the intermediate price range (p, 1), a non-tracker can only

win against a non-tracker. Without knowing its rival’s type, a non-tracker thus becomes

unwilling to offer the lowest prices (p, p′).

Following the standard logic as in Varian (1980) with the updated demand function,

we therefore find that a non-tracker’s pricing in a randomized equilibrium is given by Eq.

(3)

F (pi) = 1 +
1

2µ

1− µ

1− τ

(
1− 1

pi

)
, (3)

for pi ∈ [p′, 1], where p′ = 1−µ
1+µ−2µτ

> p = 1−µ
1+µ

. The expected price is

E(pi) =
1− µ

2(1− τ)µ
ln

(
1 +

2(1− τ)µ

1− µ

)
, (4)

14



and the expected profit πi = 1−µ
2
.24

Note that, although a non-tracker’s expected price increases with more trackers, the

expected profit remains unchanged as the number of trackers increases. Interestingly,

we thus observe that wider presence of trackers in a market redistributes payoffs from

consumers to trackers but leaves the payoff division between consumers and non-trackers

unaltered. Figures 3.4a and 3.4b depict the changes in F with respect to µ and τ . As can

be seen in Eq. (3), a higher number of trackers (a lower number of shoppers) increases

the prices of non-trackers F in the sense of first-order stochastic dominance.

Notably, the mixed equilibrium described above is the unique firm-type-symmetric

equilibrium in this case given that the limit-price equilibrium which arises later with

three firms fails to exist in a duopoly.25 In the discussed limit-price equilibrium, a non-

tracker would commit to p and a tracker would respond by monopoly pricing. A profitable

deviation arises because another non-tracker could also offer the same low price. A devi-

ation to 1 would thus yield a higher tracker profit than the commitment to p, which gives(
1−µ
2

+ µ
)
p = 1−µ

2
against a tracker but

(
1−µ
2

+ µ
2

)
p < 1−µ

2
against a non-tracker.26

It is also noteworthy that a tracker can observe the type of the rival before price

setting. This simplifying assumption allows us to abstract from learning stage that would

otherwise ensue. Our game allows a tracker to learn the rival type from either the timing

of price changes or its response to other prices.27 This implies that a non-tracker cannot

benefit from committing to the collusive price that trackers apply in the hope that a tracker

would mistake it for another tracker. We can hence proceed under the assumption that a

tracker undercuts a non-tracker and sets the monopoly price with another tracker.

3.4 Tracker’s pricing

Here, tracker prices inherit the appearance of randomness from the non-tracker prices that

they follow, although only non-trackers price in mixed strategies while trackers apply

pure price strategies. If the rival is a non-tracker, tracker prices follow F and, if the

rival is a tracker, the tracker price equals unity. Unlike the standard case, the equilibrium

distribution of tracker prices G now becomes a mixture G(p) = (1−τ)F (p)+τ1{p≥1}(p) of

a continuous discount distribution F and an indicator (step) function 1{p≥1}, representing

24Note for later use that the cdf of the minimum of two non-tracker prices is F(1)(p) = 1−(1−F (p))2 =

1− 1
4µ2

(1−µ)2

(1−τ)2

(
1− 1

p

)2
and the pdf f(1)(p) = 2(1− F (p))f(p) = − 1

2µ2

(1−µ)2

(1−τ)2

(
1− 1

p

)
1
p2 , which gives the

average minimum price E(p(1)) =
1

2µ2

(1−µ)2

(1−τ)2

(
ln p′ + 1

p′ − 1
)
.

25Following up the case of three firms is thus necessary to uncover the most interesting price equilibria.
26Baye et al. (1992) show for the Varian (1980) model of sales that, while a unique symmetric equilib-

rium arises in a duopoly, for more than two firms, there also exist a continuum of asymmetric equilibria.
We find multiple type-symmetric equilibria for triopolies.

27Incorporating a learning phase to the current model is easy but complicates the analysis without
offering much in return. In the interest of brevity, we thus concentrate here on post-learning behavior,
adding a couple words about learning in the conclusion.
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a mass point at price one. The strategy yields a tracker the expected profit of

τ
1

2
+ (1− τ)

1 + µ

2
E(p) = τ

1

2
+

1− µ2

4µ
ln

(
2(1− τ)µ+ 1− µ

1− µ

)
.

This profit exceeds the typical payoff 1−µ
2

of a non-tracker for two reasons. First, when

a tracker competes against another tracker, both earn collusive profits in continuous pric-

ing. Second, when a tracker faces a non-tracker, a tracker wins shoppers with probability

one by undercutting its rival by the minimal discount ϵ although both a tracker’s and a

non-tracker’s prices outwardly follow the same distribution function F . A non-tracker only

wins against a non-tracker and, even then, has a smaller winning probability, 1−F (pi) < 1

for pi > p′. Figure 3c compares the expected prices of trackers and non-trackers.

It is thus worth emphasizing that price dispersion in our model does not fully rely

on randomizes price strategies, unlike in models in the spirit of Varian (1980); Stahl

(1989); Burdett and Judd (1983). Here only non-trackers price in mixed strategies whereas

trackers simply follow them. To an outside observer or economist, both prices nevertheless

look random, i.e., the unconditional price distribution is non-degenerate. This subtle point

might be crucial for developing an good understanding of the morphology of equilibrium

price dispersion, studied in, for example, Kaplan and Menzio (2015).

(a) F (p) (b) F (p) (c) E(p)

Figure 3: Prices

3.5 Division of payoffs

The consumer surplus of a non-shopper is obtained as follows

CS0 = 2τ(1− τ)

(
1− E(p0)

2
+

1− E(p0) + ϵ

2

)
+ (1− τ)2 (1− E(p0)) ,

whereas the consumer surplus to a shopper can be expressed as

CS1 = 2τ(1− τ)

(
1− E(p0)

2
+

1− E(p0) + ϵ

2

)
+ (1− τ)2(1− E(p(1)),
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where E(p0) denotes the expected non-tracker price and E(p(1)) the expected minimum

of two non-tracker prices.

Non-shoppers and shoppers alike thus face higher prices in markets where trackers

collude. Furthermore, in markets where both a tracker and a non-tracker are present at

the same time, shoppers are burdened with higher prices as the minimum price becomes

E(p0) − ϵ, whereas in markets without trackers, the minimum price is lower at E(p(1)).

Consequently, the expected consumer surplus, which is calculated as µCS0 + (1−µ)CS1,

falls below the usual µ.

(a) µ = 0.25 (b) µ = 0.50 (c) µ = 0.75

Figure 4: Payoff effects of τ

To summarize, the presence of trackers in the current duopoly setup always reduces

consumer surplus since trackers receive higher profits while the profit of a non-tracker

remains unchanged.28 Figure 4 illustrates the impact of trackers on payoffs. It should be

noted that the payoffs do not add up to unity for τ ̸= 1
2
as the number of firms receiving

tracker payoffs π1 increases and the number of firms receiving non-tracker payoffs π0

decreases as τ increases.

Interestingly, trackers only benefit from the presence of other trackers up to a certain

point, after which their payoffs start to decline with the increasing number of competing

trackers. This is because collusion becomes less profitable if the competitor is more likely

to be a tracker. The mechanism is novel to the literature. When a tracker competes with

another tracker, it obtains a higher collusive price of 1, but captures only half the shoppers.

However, if a tracker is competing with a non-tracker, it receives a lower expected price

of E(p0) but attracts all the shoppers. Since a non-tracker offers higher prices if the

competitor is more likely a tracker, the difference 1 − E(p0) between the collusive price

and non-tracker price is decreasing in τ . As 1−E(p0) → 0 as τ → 1, the negative payoff

effect of sharing shoppers with another tracker dominates the positive payoff effect of

collusion for high enough values of τ .

Likewise, the wider presence of trackers also harmonizes prices paid by shoppers and

non-shoppers for two reasons. Firstly, there is the previously explained convergence be-

28We show in the next section that all results need not hold in a larger market.
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tween trackers’ and non-trackers’ expected prices. Secondly, if a tracker and a non-tracker

are both present, the non-tracker prices at E(p0) and the tracker at E(p0) − ϵ, thus of-

fering the consumer only a slightly lower price than its rival. This price-unifying effect

of tracker presence eliminates opportunities for price arbitrage benefiting shoppers when

trackers are abundant. These results suggest that a more extensive tracker presence may

reduce the number of shoppers in the long run, but not necessarily harm consumer welfare

if market prices are unified. Figure 5 shows the effect of trackers on the expected gap

between shopper and non-shopper prices.

(a) µ = 0.25 (b) µ = 0.5 (c) µ = 0.75

Figure 5: Sale price effects of τ

4 Triopoly equilibrium

More elaborate price patterns arise in a larger market where firms differ in commitment

power and consumers in price information. To analyse such markets with m > 2 firms,

we assume, as before, that all non-trackers commit to prices at time t = 0 while trackers

take turns in setting new prices, i.e., tracker i can reset its price at times t = i+m
n

for

m = 0, 1, ... The number of trackers is denoted by r. We concentrate here on triopoly

markets, which suffice to show the main insights. The analysis extends immediately to

larger market environments.29

4.1 Tracker and non-tracker cutoffs

We proceed to characterize an equilibrium by starting from the assumption that trackers

undercut the lowest price chosen by a non-tracker p̃ := mini p
i
0 if the price lies above

a cutoff p := p
r
, which can depend on the number of trackers r ≤ 3 that the tracker

can observe. Extending our earlier analysis, we can see that trackers can extract from

29We have studied also markets with more firms, which allow for more complex price patters, e.g., a
number of gaps in the equilibrium price distribution and several profit-ranked limit-price equilibria.
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shoppers at most the joint residual profit µp̃ by either setting a collusive price p̃ − ϵ or

implementing a price cycle that starts from p̃− ϵ.30 To maximize the payoffs of trackers,

we concentrate on the former hereone.

In a market with three firms, a tracker obtains the profit of 1−µ
3

by selling to captives

at price p = 1. Collusion among trackers at price p̃− ϵ provides thereby a higher tracker

payoff if (
µ

r
+

1− µ

3

)
p̃ ≥ 1− µ

3
=⇒ p̃ ≥ 1− µ

3
r
µ+ 1− µ

=: p
r
,

as ϵ → 0. Because firms have fewer captives now, the price bound for a single tracker,

p
1
= 1−µ

1+2µ
, is smaller in a triopoly than in the earlier studied duopoly, where the price

cutoff was p = 1−µ
1+µ

. Because shoppers are shared among a larger number of trackers under

collusion, the price bound is increasing in r. For multiple trackers r > 1, the price bound

p
r
clearly exceeds p. showing as standard that collusion becomes more difficult to sustain

among more firms.31

By contrast, the optimal pricing behavior of a non-tracker depends on (i) how many

trackers are present in the market and (ii) the smallest prices that the trackers will un-

dercut. A non-tracker only knows that the total number of rivals it faces is two, but

does not know how many are trackers. By and large, a single tracker tends to be more

willing to undercut a price than two trackers who share the profit from shoppers. As

the expected behavior of trackers determines the optimal strategy of non-trackers, various

pricing patterns might arise.

As a first guess, we presume that trackers always undercut the lowest price among

non-trackers, denoted hereon by p̃. Because a non-tracker only wins shoppers if both the

other firms are non-trackers, the lower bound on the prices that a non-tracker is willing

to offer is given by(
1− µ

3
+ (1− τ)2µ

)
p′′2 =

1− µ

3
=⇒ p′′2 =

1− µ

3(1− τ)2µ+ 1− µ
.

However, as the number of trackers in the market increases, a tracker may not be

willing to undercut p̃ because the profits from collusion at price p̃ − ϵ are shared among

a larger group of trackers. If only a lone tracker is expected to undercut p̃, the cutoff for

prices that a non-tracker offers reduces to(
1− µ

3
+ τ 2µ+ (1− τ)2µ

)
p′′1 =

1− µ

3
=⇒ p′′1 =

1− µ

3(1− τ)2µ+ 3τ 2µ+ 1− µ
.

Similarly, if trackers never undercut p′′, trackers only offer prices above

30The price cycle in Figure 2 serves as a punishment to sustain collusion in both triopolies and
duopolies; see the Appendix.

31Our investigations into a four-firm market show that sustaining collusion becomes increasingly dif-
ficult in a larger market.
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p′′0 =
1− µ

3µ+ 1− µ
.

The above cutoffs cover all the possibilities in a market with three firms. Because

p′′0 < p′′1 < p′′2, we can see that non-trackers are willing to offer lower prices if they expect

that trackers are less likely to undercut them. In equilibrium, non-tracker beliefs must

coincide with tracker behavior – Lemma 4.

Lemma 4 If the sup of a non-tracker’s prices equals one, an equilibrium p′′ satisfies

either of the following options

1. p
1
< p

2
< p′′ = p′′2 ⇐⇒ τ > 1− 1√

2

2. p
1
< p′′ = p′′1 ≤ p

2
⇐⇒ τ > 0.

Lemma 4 shows, on the one hand, that if non-trackers believe that colluding trackers

will undercut any price offer they make, they will do so for τ > 1− 1√
2
. A higher expected

number of trackers discourages a non-tracker from making large price concessions because

it only wins against another non-tracker. This decreases the non-tracker cutoff p′′2, allowing

it to surpass the tracker cutoff p
2
. On the other hand, Lemma 4 proves that, if non-trackers

expect that only a single tracker is willing to undercut their lowest price, this will similarly

hold true for any τ > 0. A non-tracker is willing to reduce its lowest prices p′′1 if the price

is never undercut by colluding trackers. As p′′1 hence decreases below p
2
, trackers indeed

abandon collusion for monopoly pricing.

4.2 Tracker and non-tracker prices

Thanks to Lemma 4, the existence of an equilibrium is not a problem in the markets

we analyze. On the contrary, we observe that multiple equilibria with distinctive price

dynamics exist. The primary reasons for the multiplicity can be pinpointed in the fact that

the prices of trackers are (i) strategic complements for high non-tracker prices, which the

trackers are willing to undercut, but (ii) strategic substitutes for lower non-tracker prices;

the demarcating cutoff price depends on the competition between trackers. Instead, the

prices of non-trackers are invariably (iii) strategic substitutes to tracker prices, in the sense

that non-trackers set lower prices if these prices are not undercut by two trackers. We

next discuss each tentative equilibrium in turn.

Alternative I: Mixing below the monopoly price

The simplest equilibrium pattern arises when trackers are abundant.
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Proposition 3 (Alternative I: random high prices) If τ > 1 − 1√
2
(≈ 0.2929), there

exists a market equlibrium where non-trackers mix across [p′′2, 1] while trackers offer p̃− ϵ

for p̃ ≥ p′′2.

This benchmark perhaps most resembles our previous duopoly equilibrium. Non-

trackers expect trackers to undercut them regardless of how many of them there are. This

reduces a non-tracker’s incentive to offer lower prices, reinforcing a tracker’s incentive to

undercut non-trackers. More precisely speaking, existence requires that µ
2
≥ (1 − τ)2µ,

i.e., that a tracker can expect more demand from shoppers in collusion with a single other

tracker (lhs) than the demand from shoppers that a non-tracker expects from offering the

lowest price among non-trackers (rhs).32

Alternative II: Mixing below the monopoly price and a limit price

In an alternative equilibrium, non-trackers use either lower or higher prices but not

intermediate ones. Trackers undercut the higher prices but not the lower, to which they

respond by setting the monopoly price. Thus, the equilibrium price distribution has a

gap and an atom.33

Proposition 4 (Alternative II: Random high and low prices) For any τ < 1√
2
, there

exists an alternative equilibrium where non-trackers mix across [p′′1, p2] and [p
2
+ a2, 1]. A

single tracker offers p̃− ϵ and a duo of two trackers p̃− ϵ for p̃ > p
2
and 1 for p̃ ≤ p

2
.

The presence of a gap is quite an uncommon model property, valuable for improving

the fit between the model and reality.34 Here the gap in the equilibrium price distribution

arises because the prices directly above the cutoff p
2
provide strictly less profit to non-

trackers than the prices directly below.

In particular, by pricing at p
2
+ ϵ, a non-tracker obtains(

1− µ

3
+ µ(1− τ)2(1− F (p

2
))2
)
(p

2
+ ϵ)

because it competes with non-trackers and is always undercut by trackers.

By comparison, by pricing at p
2
− ϵ, a non-tracker extracts(

1− µ

3
+ µ

(
τ 2 + (1− τ)2(1− F (p

2
))2
))

(p
2
− ϵ)

because it competes with non-trackers but is not undercut by two trackers.

32Equilibrium price distributions are derived in the Appendix.
33A more complex variant of this has more gaps: Non-trackers use either lower, intermediate, or higher

prices but not certain prices in between. All trackers undercut the highest prices. The prices in the middle
are, however, at the same time, (i) so low that a larger group of trackers is not willing to undercut them,
and (ii) so high that a smaller tracker group finds it worthwhile to underbid. The lowest prices are only
undercut by a single tracker. This equilibrium needs at least four firms.

34See Ellison and Wolitzky (2012) for another example of a gap.
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To compensate for the difference in profits, only prices lying above p
2
+a2 are employed

by non-trackers in equilibrium. The gap size a2 > 0 is defined by(
1− µ

3
+ µ(1− τ)2(1− F (p

2
))2
)
(p

2
+ a) =

(
1− µ

3
+ µ

(
τ 2 + (1− τ)2(1− F (p

2
))2
))

p
2

We find that p
2
+ a2 < 1 iff τ < 1√

2
.

Alternative III: Mixing below a limit price

The ability to sustain a gap above the tracker price cutoff, [p
2
, p

2
+ a2], brings up

another interesting possibility. If non-trackers can commit to pricing below the tracker

price cutoff, p
2
or p

1
, they can significantly reduce their exposure to tracker competition.

The idea is akin to limit pricing, where incumbents employ low prices to deter entry.

To investigate this possibility, we next suppose that the highest price employed by a

non-tracker in equilibrium is p
2
or p

1
in stead of unity.

As can be seen, pricing at p
2
− ϵ, for ϵ → 0, yields more profit to a non-tracker per

period than a deviation to unity if(
1− µ

3
+ µτ 2

)
p
2
≥ 1− µ

3
⇐⇒ p

2
≥ 1− µ

3µτ 2 + 1− µ
.

This condition is satisfied iff τ ≥ 1√
2
. In the same vein, pricing at p

1
− ϵ, for ϵ → 0, yields

more profit to a tracker per period than a deviation to unity if(
1− µ

3
+ µτ 2 + 2µτ(1− τ)

)
p
1
≥ 1− µ

3
⇐⇒ p

1
≥ 1− µ

3µτ 2 + 6µτ(1− τ) + 1− µ
,

which is only satisfied under condition τ = 1, i.e., in a market where no non-trackers

exist. We can thus focus on cases with the limit price p
2
.35

Lemma 5 If the sup of non-trackers’ prices equals p
2
, an equilibrium p′′ satisfies p

1
<

p′′ = p′′1(p2) < p
2
, which holds for all τ > 1√

2
.

We thus find that p′′ = p′′0 ≤ p
1
is not feasible. This is natural because a single tracker,

whose profit from captives remains 1−µ
3
, is willing to offer lower prices to attract shoppers

than a non-tracker, whose expected profit surpasses 1−µ
3

in this case.(
1− µ

3
+ µτ 2

)
1− µ

3
2
µ+ 1− µ

Proposition 5 (Alternative III: Random low prices) For τ ≥ 1√
2
(≈ 0.7071), there ex-

ists an alternative equilibrium where non-trackers mix across [p′′1(p2), p2]. A single tracker

35In a larger market, the limit-price may not be unique. Non-trackers can price either below a higher
price, e.g., p

4
or p

5
, that a larger group of trackers will not undercut, or below a lower price, e.g., p

2
or

p
3
which deters collusion by a smaller tracker group.
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offers p̃− ϵ and a duo of two trackers 1.

Our described limit-price mechanism to restrict collusion is different from earlier ones

where collusion is made unstable by firm-side heterogeneity, such as network variation

in Clark and Houde (2013) or asymmetric capacities in Fonseca and Normann (2008).36

Here colluding firms are homogenous while the non-colluding rivals intentionally disturb

collusion that hurts them. The presence of non-trackers also limits collusive profits in the

alternative equilibrium patterns.

Because non-tracker profit is maximized under limit pricing, we would like to argue

that the equilibrium is focal in the sense that the firms who start the game would like

to coordinate to this equilibrium (Mailath et al., 1993). Thus, while multiple equilibria

exist for τ > 1− 1√
2
, payoff-dominance selects the limit-price equilibrium for τ ≥ 1√

2
and

simplicity favors the equilibrium without a gap for 1− 1√
2
< τ < 1√

2
.37 For τ ≤ 1− 1√

2
, a

unique equilibrium exists.

Figure 6 depicts the supports of equilibrium price distributions (filled) presuming

this selection for varying numbers of shoppers and trackers. Two trackers are willing to

collude below non-tracker prices in the pink regions but only a single tracker undercuts

non-tracker prices in the blue regions. Dashdot lines denote p
1
and p

2
and dashed lines p′′1

and p′′2. Red dots represent atoms at the monopoly price. Atoms arise for all τ because

three trackers have nothing to undercut.

(a) µ = 0.25 (b) µ = 0.50 (c) µ = 0.75

Figure 6: The supports of equilibrium price distributions.

Looking at Figure 6, the gap [p
2
, p

2
+a2] (the tiny unfilled region above a line) appears

quite small in Alternative II (τ < 1− 1√
2
) and so too does the support [p′′1(p2), p2] (the tiny

filled region below a line) in Alternative III (τ > 1√
2
). The empirical implication is that

we should expect to see a lot of variation in market prices if trackers are few. However, as

trackers become increasingly common in the market, the probability mass will concentrate

36Introducing firm heterogeneity as in Narasimhan (1988) to our model would be straightforward. The
firms with the smallest consumer base would then be the most tempted to undercut rivals or collude.

37The length of the second interval [p′′1 , p2] approaches zero as τ approaches 1
2 , which implies that the

prices lying below the gap are rarely applied for intermediate values of τ in the “gap” equilibrium.
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around
{
p
2
, 1
}
. The empirical price distribution should thus look almost bimodal, with

a significant gap between modal prices, in a market where trackers are prevalent.

4.3 Tracker and non-tracker profit

(a) Alt I (b) Alt II (c) Alt III

Figure 7: Industry profits Π and expected profits π1 and π0 (µ = 0.5).

Figure 7 shows industry profits and the expected profits of trackers and non-trackers

under the three alternative equilibria.38 A general feature is that profits increase and

consumer surplus thereby decreases with more trackers if the number of trackers is either

small τ < 1− 1√
2
or already large τ > 1√

2
. Because the presence of trackers alleviates com-

petition among non-trackers, non-trackers offer higher prices. The trackers who undercut

these prices will therefore also charge higher prices, making high prices more salient. The

expected profit of colluding at monopoly prices in an all-tracker market is obviously also

increasing in τ .

Nevertheless, the difference between tracker and non-tracker profit is generally non-

monotone in the number of trackers. A higher τ implies that a firm is more likely to

face another tracker than two non-trackers. The profit of a single tracker against two

non-trackers is 1+2µ
3

E(p(1)) but the profit of a tracker against a tracker and a non-tracker

is either (i) 2+µ
3
E(p0)/2, if the trackers collude and divide the shoppers, or (ii) 1−µ

3
, if the

trackers sell to their captives only. The non-tracker profit is either constant or increases

with more trackers. The benefit of being a tracker is therefore first increasing in τ but

thereafter decreasing.

In the gap-equilibrium the non-monotone pattern is particularly pronounced below

the upper end of the support τ = 1√
2
. This is because the gap increases relatively quickly

and opportunities for profitable collusion therefore shrink rapidly. In the neighborhood

of τ = 1√
2
, non-trackers mostly offer prices below p

2
, which prevents two trackers from

undercutting them.

38See the Appendix for the details.
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5 Conclusion

We demonstrate how heterogeneous price technologies on both market sides affect equi-

librium price distribution. This involves marrying the static Varian (1980) model of sales

with Maskin and Tirole (1988) for a dynamic extension.39 We observe that consumers are

generally hurt by the presence of firms whose price commitments have a shorter duration.

The negative price effects of tracking are shown to be broad and not solely collusion-

related. The impact on consumer search incentives merits further elaboration.

We conclude by discussing very briefly some extensions of our setup:

Non-tracker learning about the number of trackers. A reasonable assumption is that

without market entry non-trackers also learn in the long run whether they face a non-

tracker or a tracker. If the rival is known to be a tracker with probability one, non-trackers

set the monopoly price to target captives. If a non-tracker knows the rival is another non-

tracker, its prices follow the usual Varian (1980) model.

Tracker learning about the number of non-trackers. If a tracker does not know whether

it is competing against a non-tracker or a tracker, tracker-optimal play in continuous

pricing for low enough τ involves a learning phase where the rival type is revealed. The

first periods are hence invested in undercutting rivals and observing the reactions: a

non-tracker cannot retaliate. Thereafter, revealed trackers collude.

Conversely, if the expected number of non-trackers remains low, a collusive equilibrium

where non-trackers collude with trackers exists. In this case, the expected gain from

exposing a non-tracker is low but the expected cost of tracker retaliation significant.

Endogeneous trackers and shoppers in a search market. The number of trackers and

shoppes can be endogenized, for example, by assuming that the (menu) cost c of tracking

market prices follows a distribution H and the (search) cost s of observing the lowest

market price the distribution W , both supported over the unit interval. The firms and

consumers with the lowest cost realizations thus become trackers and shoppers, respec-

tively. The equilibrium measure of trackers τ = H(c) ∈ (0, 1) is defined by the fixed-point

condition

π0(µ, τ) = π1(µ, τ)− c,

and that of shoppers µ = W (s) ∈ (0, 1) by the jointly determined equilibrium condition

CS0(µ, τ) = CS1(µ, τ)− s.

For example, cost distributions with H(0.5) = 0.25 and W (0.5) = 0.1 would allow to

sustain a duopoly equilibrium where approximately one half of the firms become trackers

39We hope our work inspires future theorists to, e.g., fully endogenize the timing of price commitments,
which would be an important extension but outside the scope of the paper; see Caruana and Einav (2008)
for the problems this extension would involve.
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and one half of the consumers are shoppers in expectation (Figs. 4.b and 5.b).

Endogeneous trackers with a market-making intermediary. A market-making interme-

diary can take advantage of this feature by providing a tracking technology to firms for

a fee f . Because the intermediary profits from payoff differences, f = ∆π := π1 − π0, its

optimal policy trades off the number of trackers τ = H(f), who pay the intermediary,

and the size of the fee, f .

max
f

H(f)∆π(f).

The problem has either an interior solution where some firms remain non-trackers, defined

by ∆π(f)(1+ ∂∆π(f)
∂f

) = 0, or a corner solution τ = 1 with only trackers. Notably, because

the payoff difference ∆π(f) is positive in the neighborhood of τ = 1, a firm remains willing

to pay for tracking even when all other firms are trackers. This kind of intermediation

reduces consumer surplus.40

Regulating the frequency of price change. As humble policy advice, our research sug-

gests that regulators should perhaps tap more vigilantly into the potential for regulating

the frequency of online price changes. Price dispersion has no intrinsic value in the kind

of markets we analyze but, as long as algorithms discount future payoffs, delaying a pun-

ishment weakens the punishment – disturbing thus collusion. We find that firms price

in mixed strategies if they are uncertain about (i) rival’s price commitments or (ii) their

own ability to respond. This leaves more surplus to consumers.

Efficient regulation would require trading off consumer gains with the ability to re-

spond to market shocks and the inflation costs of sticky prices (Miklós-Thal and Tucker,

2019; Wang and Werning, 2022). Extrapolating on Robert and Stahl (1993), Ater and

Rigbi (2023) also warn that the frequency of price change is interlinked with consumer

search and advertising. Alternative recently proposed solutions to algorithmic collusion

include, e.g., intervening in the algorithm learning process (Abada and Lambin, 2023;

Asker et al., 2021). Evaluating the tradeoffs is left for future studies.
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Appendix

Proof of Lemma 1

The proof is by induction in t.

Initial step. We show that the claim holds for t = n−1
n

and t = n−2
n
.

Part I. t = n−1
n
. Because the game ends after a single period, a firm’s payoff is

summarized as follows 
1
n
1−µ
2
pi for pi > pj

1
n
1
2
pi for pi = pj

1
n
1+µ
2
pi for pi < pj
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The claim of Lemma 1 therefore holds trivially as

1

n

1 + µ

2
pi.

are increasing in pi and
1

n

1− µ

2
1

exceeds
1

n

1 + µ

2
(pj − ϵ)

if and only if pj − ϵ < p.

Part II. t = n−2
n
. Now, prices remain constant for two consecutive periods before an

opportunity to change prices arrives. Supposing the rival employs the price cutoff p, a

firm has now three reasonable price strategies: pi = pj − ϵ (highest price below rival),

pi = p (highest price a rival will not undercut) and pi = 1 (highest price above rival).

Case 1. p < pj − ϵ and pj < 1.

π(pj − ϵ|pj) = 1

n

1 + µ

2
(pj − ϵ) +

1

n

(
1− 1

n

)
1− µ

2
(pj − ϵ),

π(p|pj) = 1

n

1 + µ

2
p+

1

n

(
1− 1

n

)
1 + µ

2
p =

π(1|pj) = 1

n

1− µ

2
1 +

1

n

(
1− 1

n

)
1− µ

2
1,

where π(p|pj) < π(pj − ϵ|pj) iff p(1 + µ) = 1 − µ < pj − ϵ, and π(1|pj) < π(pj − ϵ|pj) iff
1− µ < pj − ϵ.

Note that, if tracker j’s price cutoff increases to p̂ > p, then tracker i’s price cutoff

decreases to p̂ < p because π(p|pj) > π(1|pj) under a higher rival cutoff. By the symmetry

assumption, it is therefore necessary that p̂ = p to make BRi(p̂) = BRj(p̂) = 1 hold for

each firm.

Case 2. pj = 1.

π(1− ϵ|1) = 1

n

1 + µ

2
(1− ϵ) +

1

n

(
1− 1

n

)
1− µ

2
(1− ϵ) >

π(1|1) = 1

n

1

2
1 +

1

n

(
1− 1

n

)
1− µ

2
1 >

π(p|1) = 1

n

1 + µ

2
p+

1

n

(
1− 1

n

)
1 + µ

2
p.
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Case 3. if p ≥ pj − ϵ.

π(pj − ϵ|pj) = 1

n

1 + µ

2
(pj − ϵ) +

1

n

(
1− 1

n

)
1 + µ

2
(pj − ϵ) <

π(1|pj) = 1

n

1− µ

2
1 +

1

n

(
1− 1

n

)
1− µ

2
1.

Induction step. We show that, if the claim holds for t > 2
n
, the claim also holds for

t− 1 > 1
n
.

Case 1. p < pj − ϵ and pj < 1. We now take into account the rival’s assumed best

response to a price.

π(pj − ϵ|pj) + V i
t (p

j − 2ϵ) =
1

n

1 + µ

2
(pj − ϵ) +

1

n

(
1− 1

n

)
1− µ

2
(pj − ϵ) + V i

t (p
j − 2ϵ),

π(p|pj) + V i
t (1) =

1

n

1 + µ

2
p+

1

n

(
1− 1

n

)
1 + µ

2
p+ V i

t (1),

π(1|pj) + V i
t (1− ϵ) =

1

n

1− µ

2
1 +

1

n

(
1− 1

n

)
1− µ

2
1 + V i

t (1− ϵ),

where again π(p|pj) < π(pj − ϵ|pj) iff p(1+µ) = 1−µ < pj − ϵ, and π(1|pj) < π(pj − ϵ|pj)
iff 1− µ < pj − ϵ.

The claim thus holds at t− 1 for small ϵ, and large n because

V i
t (1− µ) → V i

t (1) → V i
t (1− ϵ) as ϵ → 0, n → ∞.

The remaining Cases 2. and 3. are simple and left to the reader.

Proof of Lemma 2

The claim follows from Lemma 1 Part II. Case 1. and the monotonicity of payoffs in rival

price π(pj − ϵ|pj) < π(qj − ϵ|qj) iff pj < qj.

Proof of Proposition 6

By Lemma 2, the maximum expected profit is attained by tracker 1 choosing p1 = 1 at

t = 1
n
. As nϵ → 0, all prices in the cycle 1, 1 − ϵ, 1 − 2ϵ, ..., 1 − (n − 1)ϵ are higher than

1− nϵ → 1. The expected firm profit thus exceeds(
1− µ

2
+

1 + µ

2

)
(1− nϵ) →

(
1− µ

2
+

1 + µ

2

)
=

1

2
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Proof of Proposition 7

As nϵ → ∞, all prices in the cycle 1, 1− ϵ, 1− 2ϵ, ..., 1− µ, p occur infinitely often. One

cycle takes µ
ϵ
+ 1 periods to go through.

The relative frequency of all prices within [1 − µ, 1] is thus
µ
ϵ

µ
ϵ
+1

→ 1 for ϵ → 0 while

that of price p is 1
µ
ϵ
+1

→ 0 for ϵ → 0, giving

1 + (1− µ)

2
=

2− µ

2
,

as the mean price over a cycle.

Proof of Lemma 4

Case 1. If a non-tracker believes that even two trackers will undercut its price, it is willing

to offer as low a price as p′′2. Two trackers are in turn willing to undercut this price as

long as p
2
< p′′2.

p
2
< p′′2

1− µ
3
2
µ+ 1− µ

<
1− µ

3(1− τ)2µ+ 1− µ

τ > 1− 1√
2

Case 2. If a non-tracker believes that a single tracker will undercut its price but two

trackers won’t, it is willing to offer as low a price as p′′1. A single tracker is willing to

undercut this price but two trackers not if p
1
< p′′1 ≤ p

2
.

p
1
< p′′1 ≤ p

2

1− µ
3
1
µ+ 1− µ

<
1− µ

3(1− τ)2µ+ 3τ 2µ+ 1− µ
≤ 1− µ

3
2
µ+ 1− µ

1 > (1− τ)2 + τ 2 ≥ 1

2

Case 3. If a non-tracker believes that a tracker does not undercut its price, it is willing

to offer as low a price as p′′0. A single tracker is not willing to undercut this price by any
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amount ϵ if p′′0 ≤ p
1
.

p′′0 ≤ p
1

1− µ

3µ+ 1− µ
≤ 1− µ

3
1
µ+ 1− µ

1 ≥ 1

This shows that p′′0 = p′′ ≤ p
1
cannot be satisfied as an inequality p′′0 = p′′ < p

1
. It

is thus impossible to sustain an equilibrium with two gaps, where no tracker undercuts

[p′′0, p1], a single tracker undercuts [p1+a1, p2], and two trackers undercut [p
2
+a2, 1]. Limit

pricing is also impossible because commitment to p′′0 gives a non-tracker lower payoff than

monopoly pricing when other non-trackers also commit to the same price.

Proof of Proposition 3

By Lemma 4, p
1
< p

2
< p′′2 is satisfied for τ > 1 − 1√

2
. Thus, an equilibrium where

non-trackers mix prices across [p′′2, 1] and trackers collude to p̃− ϵ > p
2
> p

1
exists. The

equilibrium price distribution of a non-tracker is given by the requirement that non-tracker

profits are the same for all prices in [p′′2, 1].

1− µ

3
=

(
1− µ

3
+ µ(1− τ)2(1− F (pi))2

)
pi

F (pi) = 1−

√
1− µ

3µ(1− τ)2
1− pi

pi

Proof of Proposition 4

By Lemma 4, p
1
< p′′1 ≤ p

2
is satiefied for τ > 0. The gap size a2 is defined in the main

text.

The equilibrium price distribution of a non-tracker for [p
2
+ a2, 1] is given by

1− µ

3
=

(
1− µ

3
+ µ(1− τ)2(1− F (pi))2

)
pi

F (pi) = 1−

√
1− µ

3µ(1− τ)2
1− pi

pi
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The equilibrium price distribution of a non-tracker for [p′′1, p2] is given by

1− µ

3
=

(
1− µ

3
+ µ((1− τ)2 + τ 2)(1− F (pi))2

)
pi

F (pi) = 1−

√
1− µ

3µ((1− τ)2 + τ 2)

1− pi

pi

Punishment price cycle in a triopoly

the profit from a marginal price discount ϵ < pj − p is

1

n

1 + 2µ

3
(pj − ϵ) +

1

n

(
1− 1

n

)
1− µ

3
(pj − ϵ) +

1

n

(
1− 1

n

)2
1− µ

3
(pj − ϵ)

because the rivals offer a smaller price in the coming two periods. However, the profit

from a large price discount pj − p is

1

n

1 + 2µ

3
p+

1

n

(
1− 1

n

)
1 + 2µ

3
p+

1

n

(
1− 1

n

)2
1 + 2µ

3
p

since this price will not be undercut in the next three periods.

The low price bound in this case is p = 1−µ
1+2µ

. Thus, the price pj at which a tracker

rather offers a large discount pj − p than a small discount ϵ, as ν → ∞ and ϵ → 0, is

given by
3(1 + 2µ)

3 + 2µ− 2µ
p = 1− µ.

Proof of Lemma 5

Denote by p′′(p̄) the lower bound on non-tracker prices when the upper bound is p̄. Ac-

counting for the fact that p′′(p
2
) < p′′(1), the proof is the same as for Lemma 4, the focus

now being on Case 2. and Case 3.

The profit of a non-tracker is

π(p
2
) : =

(
1− µ

3
+ µτ 2

)
p
2

π(p′′1(p2)) : =

(
1− µ

3
+ µτ 2 + µ(1− τ)2

)
p′′1(p2)

π(p′′0(p2)) : =

(
1− µ

3
+ µ

)
p′′0(p2)
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The lowest price a non-tracker is willing to offer is thus

p′′1(p2) =
3τ 2µ+ 1− µ

3(1− τ)2µ+ 3τ 2µ+ 1− µ
p
2

if the price is undercut by one tracker and

p′′0(p2) =
3τ 2µ+ 1− µ

3µ+ 1− µ
p
2

if the price not is undercut by a tracker.

Case 2. If a non-tracker believes that a single tracker will undercut its price but two

trackers won’t, it is willing to offer as low a price as p′′1(p2) < p
2
. A single tracker is willing

to undercut this price but two trackers not if p
1
< p′′1(p2).

1− µ
3
1
µ+ 1− µ

<
3τ 2µ+ 1− µ

3(1− τ)2µ+ 3τ 2µ+ 1− µ

1− µ
3
2
µ+ 1− µ

3
2
µ+ 1− µ

3
1
µ+ 1− µ

<
3τ 2µ+ 1− µ

3(1− τ)2µ+ 3τ 2µ+ 1− µ
,

which holds as long as τ 2 > 1
2
.

Case 3. If a non-tracker believes that a tracker does not undercut its price, it is willing

to offer as low a price as p′′0(p2) < p
2
. A single tracker is not willing to undercut this price

by any amount ϵ if p′′0(p2) ≤ p
1
.

1− µ

3µ+ 1− µ
≤ 3τ 2µ+ 1− µ

3µ+ 1− µ

1− µ
3
1
µ+ 1− µ

This is obviously impossible.

Proof of Proposition 5

By Lemma 5, τ ≥ 1√
2
implies p′′0 ≤ p

1
.

Tracker and non-tracker profits

In the limit-price equilibrium Alternative III, the profit of a non-tracker is given by

π0 =

(
1− µ

3
+ µτ 2

)
1− µ

3
2
µ+ 1− µ

.

In the alternative price equilibria, the profit of a non-tracker is invariably π0 =
1−µ
3
.
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Instead, tracker profit depends on both the pricing behavior of non-trackers and the

number of trackers in the market.

Alternative I. In this case, trackers always undercut non-trackers by ϵ if a non-tracker

is present in the market. The expected tracker profit is thus

π1 = τ 2
1

3
+ 2τ(1− τ)

2 + µ

3

E(p0)

2
+ (1− τ)2

1 + 2µ

3
E(p(1)),

where

E(p0) =

√
1− µ

3(1− τ)2µ
tan−1

(√
1

p′′2
− 1

)
E(p(1)) = − 1− µ

3(1− τ)2µ
ln p′′2

Alternative II. In this case, two trackers only undercut non-trackers if their price

exceeds p
2
, which allows us to express the expected tracker profit as

π1 = τ 2
1

3
+2τ(1−τ)

(
F (p

2
)
1− µ

3
+ (1− F (p

2
))
2 + µ

3

E(p0|p0 > p
2
)

2

)
+(1−τ)2

1 + 2µ

3
E(p(1)),

where

F (p
2
) = 1−

√√√√ 1−µ
3p

2

− 1−µ
3

− µτ 2

µ(1− τ)2

E(p0|p0 > p
2
+ a2) =

√
1− µ

3(1− τ)2µ
tan−1

(√
1

p
2
+ a2

− 1

)
1

1− F (p
2
)

E(p(1)) = − 1− µ

3(1− τ)2µ
ln (p

2
+ a2) +

1− µ

3(1− τ)2µ
(ln p

2
− ln p′′1)

Alternative III. In this case, two trackers never undercut non-trackers. The expected

tracker profit is therefore

π1 = τ 2
1

3
+ 2τ(1− τ)

1− µ

3
+ (1− τ)2

1 + 2µ

3
E(p(1)),

where

E(p(1)) =
π0

(1− τ)2µ
(ln p

2
− ln p′′1),

where π0 denotes the profit of a non-tracker.
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The total expected industry profit of trackers and non-trackers is given by

Π =τ 31 + 3τ 2(1− τ)

(
2 + µ

3
E(p0|p0 > p

2
)(1− F (p

2
)) + F (p

2
)
2(1− µ)

3
+ π0

)
+

3τ(1− τ)2
(
1 + 2µ

3
E(p(1)) + 2π0

)
+ (1− τ)33π0

and the joint consumer surplus of shoppers and non-shoppers by 1− Π.

Alternative I. Non-tracker equilibrium price distribution F is determined by

π0 =

(
1− µ

3
+ (1− τ)2µ(1− F (pi))2

)
pi

which gives

F (pi) = 1−

(
1−µ
3pi

− 1−µ
3

(1− τ)2µ

)1/2

f(pi) = 1/2

(
1−µ
3pi

− 1−µ
3

(1− τ)2µ

)−1/2
1− µ

3(1− τ)2µ

1

(pi)2

F(1|2)(p
i) = 1− (1− F (pi))2 = 1−

(
1−µ
3pi

− 1−µ
3

(1− τ)2µ

)
f(1|2)(p

i) =
1− µ

3(1− τ)2µ

1

(pi)2

where F(1|2) denotes the distribution function of a minimum of two non-tracker prices and

f(1|2) the associated density function.

The expected non-tracker price and the expected minimum of two prices are

∫ 1

p′′2

f(pi)pidpi =

∫ 1

p′′2

1/2

(
1−µ
3pi

− 1−µ
3

(1− τ)2µ

)−1/2
1− µ

3(1− τ)2µ

1

pi
dpi

=

(
1− µ

3(1− τ)2µ

)1/2 ∫ 1

p′′2

1/2

(
1

pi
− 1

)−1/2
1

pi
dpi

=

(
1− µ

3(1− τ)2µ

)1/2

tan−1

(
1

p′′2
− 1

)1/2

∫ 1

p′′2

f(1|2)(p
i)pidpi =

∫ 1

p′′2

1− µ

3(1− τ)2µ

1

pi
dpi = − 1− µ

3(1− τ)2µ
ln p′′2

Alternative II. Non-tracker equilibrium price distribution F is determined piece-wise

by

π0 =

(
1− µ

3
+ (1− τ)2µ(1− F (pi))2

)
pi =⇒ F (pi) = 1−

(
1−µ
3pi

− 1−µ
3

(1− τ)2µ

)1/2
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for pi > p
2
+ a2 and by

π0 =

(
1− µ

3
+ τ 2µ+ (1− τ)2µ(1− F (pi))2

)
pi =⇒ F (pi) = 1−

(
1−µ
3pi

− 1−µ
3

− τ 2µ

(1− τ)2µ

)1/2

for pi ≤ p
2
, which gives

f(pi) =


1/2

(
1−µ

3pi
− 1−µ

3

(1−τ)2µ

)−1/2
1−µ

3(1−τ)2µ
1

(pi)2
for pi > p

2
+ a2

1/2

(
1−µ

3pi
− 1−µ

3
−τ2µ

(1−τ)2µ

)−1/2
1−µ

3(1−τ)2µ
1

(pi)2
for pi ≤ p

2

F(1|2)(p
i) =


1− (1− F (pi))2 = 1−

(
1−µ

3pi
− 1−µ

3

(1−τ)2µ

)
, for pi > p

2
+ a2

1− (1− F (pi))2 = 1−
(

1−µ

3pi
− 1−µ

3
−τ2µ

(1−τ)2µ

)
, for pi ≤ p

2

f(1|2)(p
i) =


1−µ

3(1−τ)2µ
1

(pi)2
, for pi > p

2
+ a2

1−µ
3(1−τ)2µ

1
(pi)2

, for pi ≤ p
2

Now, the expected non-tracker price is ∫ 1

p
2
+a2

f(pi)pidpi +

∫ p
2

p′′1

f(pi)pidpi =

1− µ

3(1− τ)2µ

∫ 1

p
2
+a2

1

2

√
1−µ

3pi
− 1−µ

3

(1−τ)2µ

1

pi
dpi +

∫ p
2

p′′1

1

2

√
1−µ

3pi
− 1−µ

3
−µτ2

(1−τ)2µ

1

pi
dpi


=

(
1− µ

3(1− τ)2µ

)1/2

tan−1

(
1

p
2
+ a2

− 1

)1/2

+

−
1−µ

3(1−τ)2µ√
1+2µ

3(1−τ)2µ

tan−1

(
1− µ

1 + 2µ

1

p
2

− 1

)1/2

+

1−µ
3(1−τ)2µ√

1+2µ
3(1−τ)2µ

tan−1

(
1− µ

1 + 2µ

1

p′′1
− 1

)1/2

and the expected minimum of two prices is∫ 1

p
2
+a2

f(1|2)(p
i)pidpi +

∫ p
2

p′′1

f(1|2)(p
i)pidpi = − 1− µ

3(1− τ)2µ
ln (p

2
+ a2) +

1− µ

3(1− τ)2µ
(ln p

2
− ln p′′1)
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Discussion about the limit properties of ϵ and n

Minimum recognized discount. The limit properties of the minimum recognized discount

ϵ > 0 are of potential importance. This is the smallest discount size by which a firm is

required to undercut its rival’s price to capture all shoppers with certainty. The standard

implicit assumption for continuous price strategies is that any tiny discount suffices to

capture all shoppers. This assumption is innocuous in static models, such as Burdett

and Judd (1983). However, the assumption may become dubious in dynamic markets if

discounts accumulate in repeated application. Specifying the limit properties of ϵ and n

is therefore important for understanding the nature of equilibria – Propositions 6 and 7.

Proposition 6 Assume that the minimum recognized discount ϵ → 0 satisfies nϵ → 0

as n → ∞. In a discrete time price game, the unique equilibrium price sequence equals

(1, 1− ϵ, 1− 2ϵ, ..., 1− nϵ). As n → ∞ and ϵ → 0, the expected tracker profit is 1
2
and the

expected consumer surplus 0.

If only a tiny discount ϵ < O( 1
n
) suffices to capture any shopper, optimal prices remain

close to unity during the entire time horizon. Because the consumer is equally likely to

arrive in odd and even time periods, both firms have the same probability of winning

any shoppers in this case. In the limit, each tracker thus obtains the profit of 1
2
, leaving

almost no surplus to consumers, notwithstanding constant price cutting.

Proposition 7 Assume that the minimum recognized discount ϵ → 0 satisfies nϵ → ∞
as n → ∞. In a discrete time price game, the unique equilibrium price sequence is the

price cycle
(
1, 1− ϵ, 1− 2ϵ, ..., 1− µ, p

)
. As n → ∞ and ϵ → 0, the expected tracker profit

is 1
2
2−µ
2

and the expected consumer surplus 1− 2−µ
2
.

If only discounts exceeding a minimum discount size ϵ > O( 1
n
) are recognized by

consumers, a price cycle perpetuates. Prices thus repeat the cycle shown in Figure 2

infinitely.41 As prices only briefly revisit p but remain mostly within the set [1 − µ, 1]

during a price cycle, the average market price in this case where discounts accumulate is
2−µ
2

in the limit where prices repeat the cycle an infinite number of times.42

We proceed to consider the continuous time pricing game. As in the previous discrete

time game, we find that the nature of equilibrium depends on the limit properties of the

minimum deviation ϵ.

Lemma 6 (Folk theorem I) Assume that the minimum recognized discount ϵ → 0

satisfies nϵ → 0 as n → ∞. In a continuous time price game, any price sequence where

firms’ continuation payoffs exceed (1− t)1−µ
2

at t can be implemented in equilibrium.

When the minimum recognized discount is vanishingly small, the start price of the

41More precisely speaking, if µ and 1− p are not divisible by ϵ, the final values over cycle are 1− kϵ
and 1− lϵ where 1− kϵ > µ > 1− (k − 1)ϵ and 1− lϵ > 1− p > 1− (l − 1)ϵ.

42The remaining cases where nϵ → a ∈ (0,∞) are non-generic and thus omitted.

40



punishment cycle matters. By starting the cycle at price p > 1 − µ at time t, firms

acquire the payoffs (1 − t)p
2
. Firms keep undercutting each other over the cycle but the

price p barely budges over [t, 1].

Lemma 7 (Folk theorem II) Assume that the minimum recognized discount ϵ → 0

satisfies nϵ → ∞ as n → ∞. In a continuous time price game, any price sequence where

firms’ continuation payoffs exceed (1− t)2−µ
2

at t can be implemented in equilibrium.

When the minimum recognized discount is distinctly larger, the start price of the

punishment cycle is irrelevant. By starting the cycle at any price p at time t, firms

acquire the payoffs (1− t)2−µ
2
. Firms rotate though the cycle infinitely many times over

[t, 1], the mean price being 2−µ
2
.

Proposition 8 In a continuous time price game, maximum tracker payoffs 1
2
obtain

in a collusive equilibrium where firms set price one under the threat of reverting to a

punishment cycle started at a lower price p ∈ (1−µ, 1). The consumer obtains no expected

surplus.
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