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Abstract

Heterogeneous monopolists produce goods using either brown tech-

nology, which relies on labor and carbon energy, or green technology,

which relies solely on labor. R&D firms enhance productivity using

labor to outcompete existing monopolists, thereby driving economic

growth. The extraction of carbon energy releases pollutants that harm

production and increase the risk of environmental disaster. The gov-

ernment can optimally mitigate the distortions caused by pollution

by a two-part Pigouvian tax on carbon energy, with one part being

precautionary, applied only before any disaster occurs. When this tax

is optimally set, R&D should neither be taxed nor subsidized.
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1 Introduction

Emissions contribute to pollution, increasing the risk of a welfare-damaging

environmental disaster. OECD countries counter this risk by taxing pollut-

ing inputs and subsidizing R&D for cleaner technologies. However, there

has been little comprehensive analysis of optimal policy in an endogenously

growing market economy where pollution heightens disaster risk. This study

aims to fill that gap. The literature often assumes that the economic impact

of pollution is immediate.1 Since environmental disasters driven by pollu-

tion are expected to affect the economy mainly in the future, it is crucial to

examine precautionary policies that mitigate the disaster risk beforehand.2

In this document, following Tsur and Zemel (2008, 2009), Polasky et

al. (2011), and de Zeeuw and Zemel (2012), environmental degradation is

treated as a low-frequency shock: a random regime shift that occurs only

once, with the post-event regime persisting indefinitely. Recurrent events,

where multiple shifts occur at random intervals, can be analyzed using the

same methodology.3 Many pollution models assume a smooth damage func-

tion, allowing policymakers to respond immediately to marginal pollution

increases.4 In such cases, precautionary policy is unnecessary. However, in

this model, the damage function is discrete due to the regime shift.

Haurie and Moresino (2006) investigate the social planner’s precaution-

ary policy aimed at mitigating a potential catastrophe in an economy char-

acterized by two distinct types of capital stocks: general productive physical

capital and equipment specifically designed to reduce the social costs of the

anticipated catastrophe. In this context, it is optimal to maintain a substan-

tial stock of the alleviating capital. Other authors have examined the concept

of the green paradox:5 if investment in physical capital is irreversible across

several sectors and the implementation of corrective taxes is delayed, the

1Most authors use this assumption to simplify mathematical models. Acemoglu et al.
(2016) also cite the ability to calibrate model parameters using US microeconomic data.

2Immediate effects can be included in the model by incorporating pollution into utility
or production functions. However, this study focuses on precautionary policy and ignores
immediate effects to avoid unnecessary technical complications.

3Cf., de Zeeuw and Zemel (2012).
4E.g., van der Ploeg and de Zeeuw (1992), and Dockner and Long (1993).
5Cf., Sinn (2008), Valente (2011), Tsur and Zemel (2011), Smulders et al. (2012), and

Afonso et al. (2021).
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pre-implementation responses of the emitting sectors may counteract some

of their post-implementation adjustments. To avoid excessive complexity in

the model presented in this document, capital stocks are excluded, as incorpo-

rating physical capital, endogenous technological change, and an endogenous

random shock into the same model would be too intricate.6

Tsur and Zemel (2008, 2009) and de Zeeuw and Zemel (2012) examine an

economy where firms use two energy inputs that are perfect substitutes: a

green input that does not emit pollutants, and a brown input whose emissions

accumulate in a “hazardous” stock, posing a risk of triggering damaging

changes. They demonstrate that optimal policy necessitates a Pigouvian

tax on the “hazardous” input. In the model presented in this document,

firms can switch between the green sector, which employs only labor, and

the brown sector, which uses both labor and emitting inputs. Consequently,

a single Pigouvian tax is insufficient for achieving optimal policy.

Grimaud and Tournemaine (2007) develop a model in which firms con-

duct in-house R&D using educated labor to reduce pollution emissions, while

education directly contributes to welfare. Consequently, education enhances

both individual productivity and utility, whereas pollution diminishes wel-

fare. Additionally, a pollution tax increases the cost of polluting goods,

reallocating resources towards education and fostering economic growth. In

the model presented in this document, education is considered solely as a

transformation of labor into R&D inputs, with no direct impact on welfare.

In Silva et al. (2013), both horizontal innovation and pollution-reducing

knowledge are driven by endogenous technical change. This scenario creates

two distortions, which are addressed through an emissions tax and a con-

sumption subsidy. When pollution-reducing knowledge becomes sufficiently

efficient to surpass horizontal innovation, it is possible to achieve lower emis-

sions alongside higher output levels and growth rates. In the model presented

in this document, there is a fixed number of firms that can switch between

two sectors with distinct productivity-enhancing innovation processes: the

brown sector, which emits carbon fumes, and the green sector, which does

not. Consequently, there is no horizontal innovation.

6Golosov et al. (2014) demonstrate that, despite some complications, physical capital
can be integrated as an additional production factor in an endogenous growth model with
minimal impact on the results.
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Palokangas (2021) investigates optimal taxation in an economy where

families decide on fertility rates and invest in capital and health care that re-

duces mortality. In this context, capital accumulation and population growth

pose a risk of triggering an environmental shock, leading to a sudden increase

in mortality. This must be addressed by precautionary taxes on both capital

income and health care. In the model presented in this document, the pol-

lution externality is similar to that in Palokangas (2021). However, instead

of population growth, the focus is on R&D that drives technological change.

The rest of this document is structured as follows: Section 2 models the

economy’s technology. Section 3 illustrates the stationary-state equilibrium,

where households save, monopolists produce goods, and R&D firms strive for

higher efficiency to outcompete them. In this context, Section 4 examines

optimal policies, and Section 5 concludes with a summary of the findings.

2 Technology

2.1 Utility

In the model, time t is continuous. The representative household derives

utility from its consumption c, and the observed state of nature, q, as follows:7

u(c, q)
.
= q

c1−σ

1− σ
, ucc

.
=
∂2u

∂2c
< 0,

cuc
u

= 1− σ ∈ (0, 1), (1)

where ν ≥ 0 is a constant and σ ∈ (0, 1) ∪ (1,∞) is the constant rate of

relative risk aversion.8

2.2 Production

The consumption good is produced from a continuum of intermediate goods,

j ∈ [0, 1], each of which can be produced using either brown or green tech-

nology. With brown technology i = b, output ybj is produced from labor lj

7The existence of a persistent stationary-state growth rate requires that the elasticity
of utility u with respect to consumption c, c

u
∂u
∂c , remains constant in the stationary state.

Therefore, following Wälde (1999a, 1999b), the constant term − 1
1−σ is omitted from the

standard utility function with the constant rate of relative risk aversion, 1
1−σ (c1−σ − 1).

8Given that some economists calibrate the effects of environmental stocks using models
where the constant rate of relative risk aversion, σ, is greater than one, the model has
been extended to accommodate this scenario as well.
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and carbon energy mj according to the neoclassical production function f

with constant returns to scale:9

ybj = abγ(j)f(lj,mj), fl
.
=
∂f

∂lj
> 0, fm

.
=

∂f

∂mj

> 0, γ′ < 0,

f(0,mj) = f(lj, 0) = 0, f concave and linearly homogeneous, (2)

where ab is the state-of-the-art efficiency and µ(j) the exogenous producer-

specific efficiency using brown technology. With green technology i = g,

output ygj is produced from labor zj according to

ygj = agµ(j)zj, µ(0) = 0, µ′ > 0, (3)

where agj is the state-of-the-art efficiency and µ(j) the exogenous producer-

specific efficiency using green technology.10

The set of production lines j utilizing technology i ∈ {b, g}, denoted as

Ii, is referred to as sector i. The relative sizes of these sectors are given by

J
.
=

∫
j∈Ib

dj, 1− J .
=

∫
j∈Ig

dj. (4)

The output of the consumption good, y, is produced from the intermediate

goods j ∈ [0, 1] = Ib ∪ Ig according to the CES function:

y =

(∫
j∈Ib

y
1−1/ε
bj dj +

∫
j∈Ig

y
1−1/ε
gj dj

)ε/(ε−1)

,

ε > 1, (5)

where ε is the constant elasticity of substitution between any pair of the

inputs. Following Acemoglu et al. (2016), the immediate effect of pollution

is modeled such that the stock of pollution, P , adversely impacts the quality

of consumption c:

c = P−νy, ν ≥ 0, (6)

where ν is the constant elasticity of consumption with respect to pollution.

9The function (2) can also be specified as abf
(
γ(j)lj ,mj

)
, without altering the results.

10Following Acemoglu and Zilibotti (2001), production lines j ∈ [0, 1] are in (2) and
(3) organized so that higher values of j indicate greater effectiveness of green technology
(µ′ > 0) and lower effectiveness of brown technology (γ′ < 0) in production.
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2.3 Spillover of knowledge

In each production line j ∈ [0, 1] = Ib ∪ Ii, a unique R&D process enhances

the efficiency of that line, a unique R&D process enhances the efficiency of

that line, aij, over time. Due to knowledge spillovers within the same sector

i, innovations in production line j ∈ Ii also directly benefit other producers

k ∈ Ii \ j that use the same technology i. Following Young (1998), Aghion

and Howitt (1998), and Howitt (1999), spillovers in a sector are assumed to

depend on the knowledge of the most advanced firm. Hence, the state-of-

the-art efficiency of technology i ∈ {b, g} is defined as follows:

ai = max
j∈Ii

aij. (7)

Because there can be knowledge spillovers also between the sectors i ∈
{b, g}, it is assumed that both the state-of-efficiency of the same sector,

ai, and the state-of-the-art efficiency of the other sector, a−i, enhance the

efficiency of R&D in that sector i, Ωi. This relationship is described by the

function11

Ωi(ai, a−i),
∂Ωi

∂ai
> 0,

∂Ωi

∂a−i
> 0, Ωi concave and linearly homogeneous.

(8)

2.4 Technological change

Over a short time interval dt, an attempt to improve efficiency in production

line j ∈ Ii through R&D input sij succeeds with probability δsijdt in creating

an innovation that enhances the efficiency aij of producing good j ∈ Ii

beyond the level Ωi(ai, a−i), where δ > 0 is a constant:

daij
Ωi(ai, a−i)

= δsijdt. (9)

Conversely, over that interval dt, it fails with probability 1− δsijdt. Over a

short time interval dt, the state-of-the-art efficiency (7) increases by the sum

11In the one-sector models proposed by Young (1998), Aghion and Howitt (1998), and

Howitt (1999), equation (9) is expressed as
daij
ai

= δsijdt. In the model presented in this
document, the spillover of knowledge between sectors is essential to maintain a stable
stationary state, ensuring that the two sectors do not grow at different rates indefinitely.
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of the probabilities (9) for the goods j ∈ Ii as follows:

dai
Ωi(ai, a−i)

=

∫
j∈Ii

daij
Ωi(ai, a−i)

dj = δ

∫
j∈Ii

sijdj dt. (10)

According to (10), the state-of-the-art efficiencies evolve as follows:

ȧb
.
=
dab
dt

= δΩb(ab, ag)

∫
j∈Ib

sbjdj, ab(T ) = aTb ,

ȧg
.
=
dag
dt

= δΩg(ag, ab)

∫
j∈Ig

sgjdj, ai(T ) = aTi , (11)

where aTi is the efficiency ai at the initial time T .

2.5 The labor market

Carbon energy
∫
j∈Ib

mjdj is extracted from the nature using labor. This

generates increasing and convex costs ∆ in terms labor:

∆

(∫
j∈Ib

mjdj

)
,

∆′ > 0, ∆′′ > 0. (12)

Labor can be transformed into R&D input sij to improve efficiency in

production line j ∈ Ii within sector i ∈ {b, g}, but with increasing costs. For

analytical convenience, this relationship is expressed in a quadratic form:

s2
bj

2α
, j ∈ Ig,

s2
gj

2α
, j ∈ Ig, α > 0, (13)

where α is a constant.

The households supply a fixed amount L of labor. This supply is in

equilibrium equal to labor inputs in production,
∫
j∈Ib

zjdj+
∫
j∈Ig ljdj [cf., (2)

and (3)], the extraction costs of carbon energy, (12), and the R&D costs (13):

L =

∫
j∈Ib

zjdj +

∫
j∈Ig

ljdj + ∆

(∫
j∈Ib

mjdj

)
+

∫
j∈Ib

s2
bj

2α
dj +

∫
j∈Ig

s2
gj

2α
dj.

(14)

3 The stationary-state equilibrium

The inputs to production and R&D are denoted as vectors z
.
= {zj| j ∈ Ig},

l
.
= {lj| j ∈ Ib}, m

.
= {mj| j ∈ Ib} and s

.
=
{
sij| j ∈ Ii, i ∈ {b, g}

}
. In the
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remainder of this section, the following equilibrium is proven to exist in the

model presented in section 2:

Definition. The economy is in a stationary-state equilibrium, if the following

properties are met:

(i) The inputs of labor and carbon energy (l,m, z, s) and the relative size of

the brown sector, J ∈ (0, 1), remain constant over time.

(ii) Aggregate production y and the state-of-the-art efficiencies ab and ag

grow at the same constant rate over time.

3.1 Households

At the initial time t = T , the representative household maximizes its utility

(1) over the foreseeable future t ∈ [T,∞),∫ ∞
T

u(c, q)eρ(T−t)dt. (15)

by consumption c, given the interest rate r and the state of nature, q. By the

standard analysis, consumption c evolves according to the Euler equation

G
.
=
ċ

c
=
r − ρ
σ

⇔ r = ρ+ σG, (16)

where G is the growth rate of consumption c.

3.2 Competitive producers

Because there is no money in the model, labor is chosen as the numeraire,

so that the wage for labor is normalized at unity. Let τ represent the tax on

carbon energy costs. Competitive producers set the price of carbon energy,

v, equal to the marginal extraction cost of carbon energy [cf., (12)]

v = (1 + τ)∆′. (17)

Let p represent the price for consumption c. When intermediate good j is

produced using technology i ∈ {b, g}, competitive producers set the marginal

product of input yij, p
∂y
∂yij

, equal to the price of that input, pij [cf., (5)]:

pij = p
∂y

∂yij
= p

(
y

yij

)1/ε

with
yij
pij

∂pij
∂yij

= −1

ε
, j ∈ Ii, i ∈ {b, g}. (18)
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3.3 Production lines j ∈ [0, 1]

Each intermediate good j ∈ [0, 1] is produced by a single monopolist, labeled

accordingly. For each production line j ∈ [0, 1], there is also a competitive

R&D firm, also labeled accordingly. These agents make their decisions in the

following strategic order:

(i) Monopolist j chooses its technology i ∈ {b, g}.
(ii) R&D firm j attempts to outcompete the incumbent monopolist j using

labor sij. If successful, it becomes the new monopolist j.12

(iii) Monopolist j produces good j using labor and carbon energy (lj,mj)

with brown technology, or just labor zj with green technology.

In the next subsections, this extensive form game is solved in reverse order.

3.4 Production

Monopolist j either maximizes its brown-technology operating profit πbj =

pbjybj − lj − vmj, where pbj represents the price for its output ybj, v the price

for carbon energy mj, by the inputs of labor lj and carbon energy mj subject

to the demand curve (18) and the production function (2) in the brown sector

i = b, or it maximizes its green-technology operating profit πgj = pgjygj − zj,
where pgj represents the price for its output ygj, by labor input zj subject to

the demand curve (18) and the production function (3) in the green sector

i = g. Noting (17) and (18), the first-order conditions of monopolist j are

∂πbj
∂lj

= 0 ⇔ 1 =

(
1− 1

ε

)
p

(
y

ybj

)1/ε
∂ybj
∂lj

=

(
1− 1

ε

)
pbjabγ(j)fl(lj,mj)

for j ∈ Ib, (19)

∂πbj
∂mj

= 0 ⇔ v =

(
1− 1

ε

)
p

(
y

ybj

)1/ε
∂ybj
∂mj

=

(
1− 1

ε

)
pbjabγ(j)︸ ︷︷ ︸

=1/fl(lj ,mj)

fm(lj,mj)

⇔ fm(lj,mj)

fl(lj,mj)
= v = (1 + τ)∆′

(∫
j∈Ib

mjdj

)
for j ∈ Ib, (20)

12The model can also be extended to the scenario where there are several R&D firms,
including the incumbent monopolist j itself, without altering the results.
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∂πgj
∂zj

= 0 ⇔ 1 =

(
1− 1

ε

)(
y

ygj

)1/ε
∂ygj
∂zj

=

(
1− 1

ε

)
µ(j)pgjag

for j ∈ Ig. (21)

Because the production functions (2) and (5) are concave and the cost func-

tion (12) is strictly convex, the equilibrium (19)-(21) is unique. Noting (19)-

(21) and the linear homogeneity of the function (2), f = fllj + fmmj, the

sectorial operating profits of monopolist j are obtained as follows:

πbj(j, ab, y, p, v)
.
= max

lj ,mj

[py1/εy
1−1/ε
bj − lj − vmj] = pbjybj/ε = py1/εy

1−1/ε
bj /ε

for j ∈ Ib, (22)

πgj(j, ag, y, p, v)
.
= max

zj
[py1/εy

1−1/ε
gj − zj] = pgjygj/ε = py1/εy

1−1/ε
gj /ε

for j ∈ Ig. (23)

3.5 Research and development

Over a short time interval dt, R&D firm j that works for production line

j ∈ Ii in sector i earns expected revenue δπijsijdt, where δsijdt is the proba-

bility of an innovation [cf., (9)] and πij is its forthcoming operating profit as

monopolist j following the innovation [cf., (23)]. Over the interval dt, it is

subject to R&D cost
s2ij
2α
dt [cf., (13)]. Thus, over the short time interval dt,

the expected profit of R&D firm j ∈ Ii is

Πijdt
.
=

(
δπijsij −

s2
ij

2α

)
dt, j ∈ Ii, i ∈ {b, g}. (24)

R&D firm j ∈ Ii maximizes its expected profit (24) by its R&D input sij,

given its operating profit πij. This yields
∂Πij

∂sij
= 0, which implies that a fixed

proportion αδ of the operating profits πij are invested in R&D:

sij = αδπij, j ∈ Ii, i ∈ {b, g}. (25)

With strictly convex costs functions (13), the equilibrium (25) is unique.

Inserting (25) into (24) yields the R&D firms’ expected profits as follows:

Πij =
α

2
(δπij)

2
, j ∈ Ii, i ∈ {b, g}. (26)
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Furthermore, by (22), (23) and (25) it holds true that∫
j∈Ib

sbjdj∫
j∈Ig sgkdk

=

∫
j∈Ib

πbjdj∫
j∈Ig πgkdk

=

∫
j∈Ib

y
1−1/ε
bj dj∫

j∈Ig y
1−1/ε
gk dk

. (27)

3.6 Choice of technology

By (5) and (17)-(23), there exists a threshold monopolist j = J that is indif-

ferent between the brown and green technologies i ∈ {b, g}.13 The threshold

J divides the production lines into two sectors as follows:

Ib = [0, J ], Ig = [J, 1]. (28)

Because monopolists j ∈ Ib ∪ Ig = [0, 1] choose their technology i ∈
{b, g}, given the operating profits πij, they behave jointly as if there were a

representative monopolist maximizing their joint expected profit [cf., (26)]

Π
.
=

∫ J

0

Πbjdj +

∫ 1

J

Πgjdj (29)

by the relative size of the brown sector, J , given the operating profits πij.

By (22), (23), (25) and (26)], this maximization results in the first-order

condition that the threshold monopolist’s operative profit πiJ , output yiJ ,

R&D siJ and the production cost are identical for the sectors i ∈ {b, g}:

0 =
∂Π

∂J
= ΠbJ − ΠgJ =

α

2
(δπbJ)2 − α

2
(δπgJ)2 ⇔

πgJ = πbJ ⇔ ygJ = ybJ ⇔ sgJ = sbJ ⇔ lJ + vmJ = zJ . (30)

Because, by (22) and (23), πbJ decreases and πgJ increases with the increase

in J ,∂Π
∂J

decreases with the increase in J and the equilibrium (30) is unique.

3.7 Summary

In the system (16), (17)-(26) and (30), there is a stationary state where

• the inputs (z, l,m, s) and the relative size of the brown sector, J , remain

constant,

13The concept of the threshold monopolist is from Acemoglu and Zilibotti (2001).
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• consumption c, aggregate output y, the sectorial outputs (yb, yg), the

efficiencies (ab, ag) grow at the same rate G,

• the consumption price p and the prices (pb, pg) for the intermediate

goods fall relative to the numeraire (= the ordinary workers’ wage) at

the rate G, and

• the profits (πb, πg,Πb,Πg) and all nominal magnitudes remain constant.

A green shift can be defined as a decrease in the relative size of the brown

sector, J . Consequently, a marginal green shift is represented as dJ < 0.

4 The government

The government, being the only entity large enough to internalize these ex-

ternalities, imposes a tax on carbon energy costs. The revenue generated

from this tax is distributed to households through non-distorting transfers.

In this section, externalities and the concept of an environmental shock

are first introduced. Next, the government’s first-best solution is derived.

Finally, the optimal taxation is obtained by comparing that solution with

private agents’ equilibrium conditions, as presented in the previous section.

The environmental disaster causes an abrupt decline in the state of na-

ture, q, from 1 to a constant ϕ ∈ (0, 1), negatively impacting welfare u(c, q).

This event reduces the marginal utility of consumption, uc = qc−σ [cf., (1)],

at a given consumption level, c. The relative damage of the environmen-

tal shock to the state of nature, q, can be expressed in terms of the utility

function (1) as follows:

u− u|q=ϕ
u

=
u(c, q)− u(c, ϕ)

u(c, q)
= 1− ϕ

q
> 0. (31)

Aggregate emissions
∫
j∈Ib

mjdj contribute to the stock of pollution, P ,

but the nature absorbs a constant proportion β of that stock:

Ṗ
.
=
dP

dt
=

∫
j∈Ib

mjdj − βP, β > 0, P (T ) = PT , (32)

where PT is the initial value of P at time T . An increase in pollution P

increases the probability of that disaster, φ. By this, the state of the nature

11



is determined as follows:

q =
{ ϕ ∈ (0, 1) with probability φ(P ) ∈ (0, 1),

1 with probalility 1− φ(P ),
φ′ > 0. (33)

To run optimal policy, the government needs natural scientists’ estimates on

the pollution absorption rate β, the relative environmental decline due to the

disaster, ϕ, and the marginal effect of pollution on disaster risk, φ′.

By the production functions (2), (3), (5) and (6), consumption c is a

function of inputs (z, l,m), the size of the brown sector, J [cf., (4)], efficiency

(ab, ag) and pollution P :

c(z, l,m, J, ab, ag, P ) = P−νy, y
.
=

(∫
j∈Ib

y
1−1/ε
bj dj +

∫
j∈Ig

y
1−1/ε
j dj

)ε/(ε−1)

.

(34)

The government maximizes the household’s utility (15) by the inputs of la-

bor and carbon energy, (z, l,m), R&D s and the relative size of the brown

sector, J , subject to consumption (34), the equilibrium condition of the labor

market, (14), the evolution of the efficiencies of the sectors, (ab, ag), (11), the

evolution of pollution P , (32), and the environmental shock (33). This yields

the following first-best conditions (cf., the Appendix):

λ =

{
qc−σ ∂y

ybj
abfl(lj,mj) for j ∈ [0, J ],

qc−σ ∂y
ybj
ag for j ∈ [J, 1],

(35)

q

cσ
εy1/ε

ε− 1

(
y

1−1/ε
bJ − y1−1/ε

gJ

)
= λ

(
lJ +

fm(lJ ,mJ)

fl(lJ ,mJ)
mJ − zJ +

s2
gJ − s2

bJ

2α

)
,

(36)

ς = ρ+ (σ − 1)G+ φ(P )(1− ϕ/q) = r −G+ φ(P )(1− ϕ/q), (37)∫ J
0
sbjdj∫ 1

J
sgkdk

=

∫ J
0
y

1−1/ε
bj dj∫ 1

J
y

1−1/ε
gk dk

, (38)

fm(lj,mj)

fl(lj,mj)
−∆′ =

1

λ

[
σ − 1

c

εy1/ε

ε− 1

(
y

1−1/ε
bJ − y1−1/ε

gJ

) β
mJ

+
1

ς

(
1− ϕ

q

)
φ′ + (1− σ)

ν

P

]
,

j ∈ [0, J ].

(39)

Equations (35) establish a uniform shadow price of labor, λ, for the en-

tire economy. The outputs yij of intermediate goods i ∈ Ii in both sectors

12



i ∈ {b, g} are adjusted to uphold this uniformity. By the private agents’

equilibrium conditions (20), (25) and (30), the first-best condition (36) holds

true. This result can be rephrased as follows:

Proposition 1 The markets determine the relative size of the brown sector,

J , optimally.

The difference between the interest rate r and the growth rate G is termed

the effective rate of time preference. Equation (37) defines the expected ef-

fective rate of time preference:

ς
.
= ρ+ (σ − 1)G+ φ(P )(1− ϕ/q) = r −G+ φ(P )(1− ϕ/q). (40)

This is the sum of the effective rate of time preference, r − G, and the

expected relative loss in utility, φ(P )(1 − ϕ
q
), where φ(P ) is the probability

of the disaster [cf., (33)] and 1 − ϕ
q

represents the expected relative loss in

welfare at the time of the disaster [cf., (1)]. Consistently, term
(
1 − ϕ

q

)
φ′

represents the expected marginal relative disutility of pollution through the

environmental disaster.

Condition (38) is the same as the private agents’ equilibrium condition

for R&D, (27). This result can be rephrased as follows:

Proposition 2 R &D for any technology i ∈ {b, g} should neither be taxed

nor subsidized.

Inserting (20) and (30) into condition (39) yields

τ∆′ =
fm
fl
−∆′ =

1

λ

[
1

ς

(
1− ϕ

q

)
φ′ + (1− σ)

ν

P

]
.

(41)

This results can be rephrased as follows:

Proposition 3 Carbon energy must be taxed at the rate

τ =
1

∆′λ

[
(1− σ)

ν

P
+

1

ς

(
1− ϕ

q

)
φ′
]
,

(42)

where λ is the marginal cost of labor, ∆′λ the marginal cost of carbon energy,

σ the constant rate of relative risk aversion, ν the elasticity of consumption

with respect to pollution, and 1
ς

(
1− ϕ

q

)
φ′ is the flow of the expected marginal

relative disutility of pollution through the disaster, discounted by the expected

effective rate of time preference, ς. The tax (42) consists of two parts:

13



1
∆′λ

(1− σ) ν
P

the Pigouvian tax to correct the immediate damages of pollution.

1
∆′λ

1
ς

(
1− ϕ

q

)
φ′ the precautionary tax to be applied before any disaster occurs.

5 Concluding remarks

This document integrates technological change into an economy anticipating

an environmental disaster.The extraction of carbon energy through labor

contributes to pollution, increasing the risk of welfare-harming environmental

disaster. Monopolists can produce intermediate goods with two alternative

technologies: either brown technology relying on labor and carbon energy,

or green technology relying solely on labor. R&D firms strive to displace

incumbent monopolists by enhancing efficiency through labor.

In this setup, the green shift means a transfer of monopolists from the

brown into the green technology. The central issue is how a government can

improve welfare through taxation. To implement optimal policies, natural

scientists should provide estimates of the pollution absorption rate, the rela-

tive environmental degradation at the time of the disaster, and the marginal

effect of pollution on disaster risk.

When pollution incrementally affects welfare, policies can be implemented

concurrently. However, when pollution impacts welfare through stochastic

low-frequency shocks, the precautionary principle must be applied: policies

must be enacted before the shock occurs, as it is too late once the shock

happens. Consequently, the optimal tax on carbon energy must consist of

two parts. The first part acts as a Pigouvian tax, addressing the immediate

effects of pollution. It is proportional to the elasticity of consumption with

respect to pollution. The second, precautionary part of the optimal tax

counters the expected disaster due to pollution. It is proportional to the

flow of the expected marginal relative disutility of pollution through the

disaster, discounted by the expected effective rate of time preference. Since

this two-part tax alone eliminates the distortion caused by pollution, R&D

should neither be taxed nor subsidized.
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Appendix

1. The government’s problem

The government’s maximizes utility (15) with (1) by (z, l,m, J, s) subject

to the following constraints [cf., (2), (3), (11), (14), (32), (33) and (34)]:

c(z, l,m, J, ab, ag, P )
.
= P−νy = P−ν

(∫
j∈Ib

y
1−1/ε
bj dj +

∫
j∈Ig

y
1−1/ε
gj dj

)ε/(ε−1)

,

(43)

ybj = abγ(j)f(lj,mj), ygj = agµ(j)zj, (44)

ȧi
.
=
dai
dt

= δΩi(ai, a−i)

∫
j∈Ii

sijdj, ai(T ) = aTi , i ∈ {b, g}, (45)

Ṗ =

∫
j∈Ib

mjdj − βP, (46)

q =
{ ϕ ∈ (0, 1) with probability φ(P ) ∈ (0, 1),

1 with probalility 1− φ(P ),
φ′ > 0, (47)

L =

∫
j∈Ig

zjdj +

∫
j∈Ib

ljdj + ∆

(∫
j∈Ib

mjdj

)
+

∫
j∈Ib

s2
bj

2α
dj +

∫
j∈Ig

s2
gj

2α
dj,

(48)

where J =
∫
j∈Ib

dj. The value function of this problem is

Φ(ab, ag, P, q, T )
.
= max

(z, l,m, J, s)
s.t. (43)-(48)

∫ ∞
T

u
(
c(z, l,m, ab, ag), q

)
eρ(T−t)dt. (49)

2. The Bellman equation

The Bellman equation for the maximization in (49) is given by

ρΦ(ab, ag, P, q, T ) = max
z, l,m, J, s
s.t. (48)

Ψ(z, l,m, J, s, ab, ag, P, q, T ) with (50)

Ψ(z, l,m, J, s, ab, ag, P, q, T )

.
= u

(
c(z, l,m, J, ab, ag, P ), q

)
+ φ(P )

(
Φ
∣∣
q=ϕ
−Φ
)

+
∂Φ

∂ab
ȧb +

∂Φ

∂ag
ȧg +

∂Φ

∂P
Ṗ

=
q

1− σ
c(z, l,m, J, ab, ag, P )1−σ +

∂Φ

∂ab
δΩb(ab, ag)

∫
j∈Ib

sbjdj

+
∂Φ

∂ag
δΩg(ag, ab)

∫
j∈Ig

sgjdj +
∂Φ

∂P

(∫
j∈Ib

mjdj − βP
)

+ φ(P )
(
Φ
∣∣
q=ϕ
−Φ
)
,

(51)
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where q jumps from 1 down to ϕ and φ(P )
(
Φ
∣∣
q=ϕ
−Φ
)

vanishes at the moment

of the environmental shock.

Because, by (51), there is a unique threshold production line

J = arg max
J s.t. (48)

Ψ(z, l,m, J, s, ab, ag, P, q, T ).

then Ib = [0, J ] and Ig = [J, 1] hold true. Thus, the function (43) and the

equations (48) and (51) can be rewritten as follows:

Ψ(z, l,m, J, s, ab, ag, P, q, T ) =

q

1− σ
c(z, l,m, J, ab, ag, P ) +

∂Φ

∂ab
δΩb(ab, ag)

∫ J

0

sbJdj

+ φ(P )
(
Φ
∣∣
q=ϕ
−Φ
)

+
∂Φ

∂ag
δΩg(ag, ab)

∫ 1

J

sgJdj +
∂Φ

∂P
(mJ − βP ) with (52)

c(z, l,m, J, ab, ag, P )
.
= P−νy = P−ν

(∫ J

0

y
1−1/ε
bj dj +

∫ 1

J

y
1−1/ε
gj dj

)ε/(ε−1)

= P−ν
[
a

1−1/ε
b

∫ J

0

f(lj,mj)
1−1/εdj + a1−1/ε

g

∫ 1

J

z
1−1/ε
j dj

]ε/(ε−1)

,

(53)

L =

∫ 1

J

zjdj +

∫ 1

0

ljdj + ∆

(∫ 1

0

mjdj

)
+

∫ j

0

s2
bj

2α
dj +

∫ 1

J

s2
gj

2α
dj. (54)

The function (53) has partial derivatives

P ν ∂c

∂ab
=

∫ J

0

∂y

∂ybj

∂ybj
∂ab

dj =

∫ J

0

(
y

ybj

)1/ε
ybj
ab
dj =

y1/ε

ab

∫ J

0

y
1−1/ε
bj dj, (55)

P ν ∂c

∂ag
=

∫ 1

J

∂y

∂ygj

∂ygj
∂ag

dj =

∫ 1

J

(
y

ygj

)1/ε
ygj
ag
dj =

y1/ε

ag

∫ 1

J

y
1−1/ε
gj dj, (56)

P ν ∂c

∂J
=
∂y

∂J
=
εy1/ε

ε− 1

(
y

1−1/ε
bJ − y1−1/ε

gJ

)
,

(57)

∂c

∂ab
ab +

∂c

∂ag
ag = P−νy1/ε

[∫ J

0

y
1−1/ε
bj dj +

∫ 1

J

y
1−1/ε
gj dj︸ ︷︷ ︸

=y1−1/ε

]
= P−νy = c. (58)

The government maximizes the function (53) by (z, l,m, J, s) subject to

(54). The Lagrangean for this is

L .
= Ψ(z, l,m, J, s, ab, ag, P, q, T ) +

λ

[
L−

∫ 1

J

zjdj −
∫ J

0

ljdj −∆

(∫ J

0

mjdj

)
−
∫ J

0

s2
bj

2α
dj −

∫ 1

J

s2
gj

2α
dj

]
,

(59)
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where the Lagrangean multiplier satisfies the condition

λ

[
L−

∫ 1

J

zjdj −
∫ J

0

ljdj −∆

(∫ J

0

mjdj

)
−
∫ J

0

s2
bj

2α
dj −

∫ 1

J

s2
gj

2α
dj

]
= 0.

(60)

The first-order conditions for maximizing (59) by (z, l,m, J, s) are

λ =
∂Ψ

∂lj
= qc−σ

∂c

∂lj
= qc−σP−ν

∂y

∂yb
abγ(j)fl(lj,mj) for j ∈ [0, J ], (61)

λ∆′ =
∂Ψ

∂mj

= qc−σ
∂c

∂mj

+
∂Φ

∂P
= qc−σP−ν

∂y

∂yb
abγ(j)︸ ︷︷ ︸

=λ/fl(lj ,mj), cf., (61)

fm(lj,mj) +
∂Φ

∂P

= λ
fm(lj,mj)

fl(lj,mj)
+
∂Φ

∂P
⇔ fm(lj,mj)

fl(lj,mj)
= ∆′ − 1

λ

∂Φ

∂P
, (62)

λ =
∂Ψ

∂zj
= qc−σ

∂c

∂zj
= qc−σP−ν

∂y

∂yg

∂yg
∂zj

= qc−σP−ν
∂y

∂yg
agµ(j), (63)

λ

α
sbj =

∂Ψ

∂sbj
=
∂Φ

∂ab
δΩb(ab, ag), j ∈ [0, J ], (64)

λ

α
sgj =

∂Ψ

∂sg
=
∂Φ

∂ag
δΩg(ag, ab), j ∈ [J, 1], (65)

λ

(
lJ + ∆′mJ − zJ +

s2
bJ − s2

gJ

2α

)
=
∂Ψ

∂J

= qc−σ
∂c

∂J
+mJ

∂Φ

∂P
+

∂Φ

∂ab
δΩb︸ ︷︷ ︸

=λsbJ/α cf., (64)

sbJ −
∂Φ

∂ag
δΩg︸ ︷︷ ︸

=λsgJ/α cf., (65)

sgJ

= qc−σ
εy1/ε

ε− 1

(
y

1−1/ε
bJ − y1−1/ε

gJ

)
+mJ

∂Φ

∂P
+
λ

α
(s2
bJ − s2

gJ) ⇔

qc−σ
εy1/ε

ε− 1

(
y

1−1/ε
bJ − y1−1/ε

gJ

)
= λ

(
lJ + ∆′mJ − zJ +

s2
bJ − s2

gJ

2α
+
s2
gJ − s2

bJ

α

)
−mJ

∂Φ

∂P

= λ

(
lJ − zJ +

s2
gJ − s2

bJ

2α

)
+

(
∆′ − 1

λ

∂Φ

∂P︸ ︷︷ ︸
=fm/fl cf., (62)

)
λmJ

= λ

(
lJ +

fm
fl
mJ − zJ +

s2
gJ − s2

bJ

2α

)
.

(66)
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3. The stationary state

The relative efficiency of the green sector can be defined as follows:

a
.
= ag/ab. (67)

The system (16), (44), (46), (53)-(65) and (67), has a stationary state where

pollution P , the relative efficiency of the green sector, a, the inputs for pro-

duction, (z, l,m), the relative size of the brown sector, J , and inputs to

R&D, s, are constants, while consumption c, outputs (y, yb, yg) and efficien-

cies (ab, ag) grow at the constant rate G [cf., (8), (16), (45), (46) and (67)]:

(z, l,m, J, s) constants, Ṗ = 0 ⇔
∫ J

0

mjdj = βP, (68)

G =
ċ

c
=
ȧb
ab

= δΩb

(
1,
ag
ab

)∫ J

0

sbjdj = δΩb(1, a)

∫ J

0

sbjdj =
ȧg
ag

= δΩg

(
1,
ab
ag

)∫ 1

J

sgjdj = δΩg

(
1,

1

a

)∫ 1

J

sgjdj ⇔

Ωb(1, a)

∫ J

0

sbjdj = Ωg

(
1,

1

a

)∫ 1

J

sgjdj =
G

δ
. (69)

Differentiating the logarithm of equation (67) with respect to time t and

noting (8) and (45) shows that the stationary state (69) is stable:

ȧ

a
=
ȧg
ag
− ȧb
ab

= δΩg

(
1,

1

a

)∫ 1

J

sgjdj − δΩb(1, a)

∫ J

0

sbjdj

= δ

[
Ωg(1, 1/a)

∫ 1

J

sgjdj − Ωb(1, a)

∫ J

0

sbjdj

]
with

∂

∂a

(
ȧ

a

)
ȧ=0

= −δ
(
∂Ωg

∂ab︸︷︷︸
+

1

a2

∫ 1

J

sgjdj︸ ︷︷ ︸
constant

+
∂Ωb

∂ag︸︷︷︸
+

∫ J

0

sbjdj︸ ︷︷ ︸
constant

)
< 0.

The constraint βP =
∫ J

0
mjdj defines the function J(P,m). Differenti-

ating this function totally yields β dP = mJdJ +
∫ J

0
dmj dj, by which the

function can be presented with the partial derivatives as follows:

J(P,m),
∂J

∂P
=

β

mJ

,
∂J

∂mj

= − 1

mJ

for j ∈ [0, J ]. (70)
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4. The specification of the value function

The government’s problem is addressed by identifying a specification for

the value function (49) that satisfies the Bellman equation (50) along with

(52) in the stationary state (68) and (69). Let’s propose that (49) represents

the maximal periodic utility u = q
1−σc(z, l,m, J, ab, ag)

1−σ subject to the

equilibrium condition of the labor market, (54), and the stationary-state

conditions (68) and (69), divided by a positive and piecewise differentiable

function ς of state variables (P, q) [cf., (1), (43), (49) and (70)]:

Φ
(
ab, ag, P, q, T

) .
= max

(z, l,m, J) s.t. (54),(68),(69)

u

ς(P, q)

= max
(z, l,m, J) s.t. (54), βP =

∫ J
0 mjdj

q/(1− σ)

ς(P, q)
c(z, l,m, J, ab, ag, P )1−σ

=
q/(1− σ)

ς(P, q)
P (σ−1)ν

[
max

(z, l,m) s.t. (54)
y
(
z, l,m, J(P,m), ab, ag

)]1−σ

.
(71)

By (70), the partial derivatives of the function (71) with respect to the state

variables are the following:

∂Φ

∂ab
= (1− σ)

Φ

c

∂c

∂ab
,

∂Φ

∂ag
=

Φ

c

∂c

∂ag
= (1− σ)

Φ

c

∂c

∂ag
, (72)

∂Φ

∂P
= (1− σ)

Φ

y

∂y

∂J

∂J

∂P
− Φ

ς

∂ς

∂P
+ (σ − 1)ν

Φ

P

= (1− σ)
Φ

y

∂y

∂J

β

mJ

− Φ

ς

∂ς

∂P
− (1− σ)ν

Φ

P
. (73)

By (58) and (72), the function (71) has the property

∂Φ

∂ab
ab +

∂Φ

∂ag
ag =

q

ς
c−σ
(
∂c

∂ab
ab +

∂c

∂ag
ag︸ ︷︷ ︸

=c

)
=
q

ς
c1−σ = (1− σ)Φ. (74)

At the occurrence of the shock, q falls down from 1 to ϕ, but the state

variables (ab, ag, P ) do not change. Hence, by (31) and (71), one obtains

Φ− Φ
∣∣
q=ϕ

Φ
=
u− u|q=ϕ

u
= 1− ϕ

q
> 0. (75)

Inserting the stationary-state conditions (68) and (69), the result (74)

and the jump condition (75) into the Bellman equation (50) with (52) and
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dividing by Φ solve for ς:

ρ =
Ψ

Φ
=
u

Φ
+ φ(P )

Φ
∣∣
q=ϕ
−Φ

Φ
+

1

Φ

∂Φ

∂ab
ȧb +

1

Φ

∂Φ

∂ag
ȧb +

∂Φ

∂P
Ṗ︸︷︷︸
=0

=
u

Φ
+ φ(P )

Φ
∣∣
q=ϕ
−Φ

Φ︸ ︷︷ ︸
=ϕ/q−1

+

(
ab
Φ

∂Φ

∂ab
+
ag
Φ

∂Φ

∂ag︸ ︷︷ ︸
=1−σ

)
G

= ς + φ(P )(ϕ/q − 1) + (1− σ)G ⇔ ς = ρ+ (σ − 1)G+ φ(P )(ϕ/q − 1).
(76)

By this, the function ς(P, q) can be specified as

ς(P, q)
.
= ρ+ (σ − 1)G+ φ(P )

(
1− ϕ

q

)
with

∂ς

∂P
=
(

1− ϕ

q

)
φ′ > 0. (77)

Because q ∈ {ϕ, 1}, the function (77) is piecewise differentiable, satisfying

the Bellman equation (50) with (52) in the stationary state (68) and (69).

From (71), (73) and (77) it follows that

1

Φ

∂Φ

∂P
=

1− σ
y

∂y

∂J

β

mJ

− 1

ς

(
1− ϕ

q

)
φ′ − (1− σ)

ν

P
. (78)

6. Optimal policy

By (56) and (72), the first-order conditions (65) can be written as follows:∫ J
0
sbjdj∫ 1

J
sgkdk

=
∂Φ
∂ab
ab

∂Φ
∂ag
ag

=
∂c
∂ab
ab

∂c
∂ag
ag

=

∫ J
0
y

1−1/ε
bj dj∫ 1

J
y

1−1/ε
gk dk

. (79)

Plugging (78) into the first-order condition (62) yields

fm(lj,mj)

fl(lj,mj)
−∆′ = −1

λ

∂Φ

∂P
=

1

λ

[
σ − 1

y

∂y

∂J

β

mJ

+
1

ς

(
1− ϕ

q

)
φ′ + (1− σ)

ν

P

]
(80)

for j ∈ [0, J ]. Results (61) and (63) are summarized in (35). The result

(66) corresponds to (36), the result (76) corresponds to (37), the result (79)

corresponds to (38), and the result (80) corresponds to (39).
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